Background and Objective:Self-monitoring of blood glucose(SMBG)is crucial for achieving a glycemic target and upholding blood glucose stability,both of which are the primary purpose of anti-diabetic treatments.However...Background and Objective:Self-monitoring of blood glucose(SMBG)is crucial for achieving a glycemic target and upholding blood glucose stability,both of which are the primary purpose of anti-diabetic treatments.However,the association between time in range(TIR),as assessed by SMBG,andβ-cell insulin secretion as well as insulin sensitivity remains unexplored.Therefore,this study aims to investigate the connections between TIR,derived from SMBG,and indices representingβ-cell functionality and insulin sensitivity.The primary objective of this study was to elucidate the relationship between short-term glycemic control(measured as points in range[PIR])and bothβ-cell function and insulin sensitivity.Methods:This cross-sectional study enrolled 472 hospitalized patients with type 2 diabetes mellitus(T2DM).To assessβ-cell secretion capacity,we employed the insulin secretion-sensitivity index-2(ISSI-2)and(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index,while insulin sensitivity was evaluated using the Matsuda index and HOMA-IR.Since SMBG offers glucose data at specific point-in-time,we substituted TIR with PIR.According to clinical guidelines,values falling within the range of 3.9-10 mmol were considered"in range,"and the corresponding percentage was calculated as PIR.Results:We observed significant associations between higher PIR quartiles and increased ISSI-2,(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index,Matsuda index(increased)and HOMA-IR(decreased)(all P<0.001).PIR exhibited positive correlations with log ISSI-2(r=0.361,P<0.001),log(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index(r=0.482,P<0.001),and log Matsuda index(r=0.178,P<0.001)and negative correlations with log HOMA-IR(r=-0.288,P<0.001).Furthermore,PIR emerged as an independent risk factor for log ISSI-2,log(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index,log Matsuda index,and log HOMA-IR.Conclusion:PIR can serve as a valuable tool for assessingβ-cell function and insulin sensitivity.展开更多
文摘Background and Objective:Self-monitoring of blood glucose(SMBG)is crucial for achieving a glycemic target and upholding blood glucose stability,both of which are the primary purpose of anti-diabetic treatments.However,the association between time in range(TIR),as assessed by SMBG,andβ-cell insulin secretion as well as insulin sensitivity remains unexplored.Therefore,this study aims to investigate the connections between TIR,derived from SMBG,and indices representingβ-cell functionality and insulin sensitivity.The primary objective of this study was to elucidate the relationship between short-term glycemic control(measured as points in range[PIR])and bothβ-cell function and insulin sensitivity.Methods:This cross-sectional study enrolled 472 hospitalized patients with type 2 diabetes mellitus(T2DM).To assessβ-cell secretion capacity,we employed the insulin secretion-sensitivity index-2(ISSI-2)and(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index,while insulin sensitivity was evaluated using the Matsuda index and HOMA-IR.Since SMBG offers glucose data at specific point-in-time,we substituted TIR with PIR.According to clinical guidelines,values falling within the range of 3.9-10 mmol were considered"in range,"and the corresponding percentage was calculated as PIR.Results:We observed significant associations between higher PIR quartiles and increased ISSI-2,(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index,Matsuda index(increased)and HOMA-IR(decreased)(all P<0.001).PIR exhibited positive correlations with log ISSI-2(r=0.361,P<0.001),log(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index(r=0.482,P<0.001),and log Matsuda index(r=0.178,P<0.001)and negative correlations with log HOMA-IR(r=-0.288,P<0.001).Furthermore,PIR emerged as an independent risk factor for log ISSI-2,log(ΔC-peptide_(0-120)/Δglucose_(0-120))×Matsuda index,log Matsuda index,and log HOMA-IR.Conclusion:PIR can serve as a valuable tool for assessingβ-cell function and insulin sensitivity.