At a working conference, Vice Mayor Lu Yucheng presented a plan for Beijing’s 1997 work in foreign trade and economic cooperation. The general task is to carry out the strategy of great economy and trade, expand expo...At a working conference, Vice Mayor Lu Yucheng presented a plan for Beijing’s 1997 work in foreign trade and economic cooperation. The general task is to carry out the strategy of great economy and trade, expand exports, use foreign funds reasonably and effectively, and conduct international economic and technical cooperation. The major target is to complete export volume of US$2.3 billion. Last year’s import and展开更多
The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the fi...The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the first conference organised by the Anura3D MPM Research Community,following a series of international workshops and symposia previously held in The Netherlands,UK,Spain and Italy,as part of the European Commission FP7 Marie-Curie project MPM-DREDGE.We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics,and take this opportunity to announce that the 2nd conference,MPM2019,will be held in Cambridge,UK in January 2019.展开更多
To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capabl...To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the rela- tionship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expan- sion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.展开更多
Bug isolation is a popular approach for multi-fault localization(MFL),where all failed test cases are clustered into several groups,and then the failed test cases in each group combined with all passed test cases are ...Bug isolation is a popular approach for multi-fault localization(MFL),where all failed test cases are clustered into several groups,and then the failed test cases in each group combined with all passed test cases are used to localize only a single fault.However,existing clustering algorithms cannot always obtain completely correct clustering results,which is a potential threat for bug isolation based MFL approaches.To address this issue,we first analyze the influence of the accuracy of the clustering on the performance of MFL,and the results of a controlled study indicate that using the clustering algorithm with the highest accuracy can achieve the best performance of MFL.Moreover,previous studies on clustering algorithms also show that the elements in a higher density cluster have a higher similarity.Based on the above motivation,we propose a novel approach FATOC(One-Fault-at-a-Time via OPTICS Clustering).In particular,FATOC first leverages the OPTICS(Ordering Points to Identify the Clustering Structure)clustering algorithm to group failed test cases,and then identifies a cluster with the highest density.OPTICS clustering is a density-based clustering algorithm,which can reduce the misgrouping and calculate a density value for each cluster.Such a density value of each cluster is helpful for finding a cluster with the highest clustering effectiveness.FATOC then combines the failed test cases in this cluster with all passed test cases to localize a single-fault through the traditional spectrum-based fault localization(SBFL)formula.After this fault is localized and fixed,FATOC will use the same method to localize the next single-fault,until all the test cases are passed.Our evaluation results show that FATOC can significantly outperform the traditional SBFL technique and a state-of-the-art MFL approach MSeer on 804 multi-faulty versions from nine real-world programs.Specifically,FATOC’s performance is 10.32%higher than that of traditional SBFL when using Ochiai formula in terms of metric A-EXAM.Besides,the results also indicate that,when checking 1%,3%and 5%statements of all subject programs,FATOC can locate 36.91%,48.50%and 66.93%of all faults respectively,which is also better than the traditional SBFL and the MFL approach MSeer.展开更多
文摘At a working conference, Vice Mayor Lu Yucheng presented a plan for Beijing’s 1997 work in foreign trade and economic cooperation. The general task is to carry out the strategy of great economy and trade, expand exports, use foreign funds reasonably and effectively, and conduct international economic and technical cooperation. The major target is to complete export volume of US$2.3 billion. Last year’s import and
基金support provided by the European Union Seventh Framework Program(FP7/2007-2013)under grant agreement No.PIAG-GA-2012-324522“MPM-DREDGE”
文摘The 1st International Conference on the Material Point Method for "Modelling Large Deformation and Soil–Water–Structure Interaction"(MPM2017)was held in Delft,The Netherlands on 10-13 January 2017.This is the first conference organised by the Anura3D MPM Research Community,following a series of international workshops and symposia previously held in The Netherlands,UK,Spain and Italy,as part of the European Commission FP7 Marie-Curie project MPM-DREDGE.We are delighted to present seven contributions in this Special Column of the Journal of Hydrodynamics,and take this opportunity to announce that the 2nd conference,MPM2019,will be held in Cambridge,UK in January 2019.
基金supported by the National Natural Science Foundation of China(51305452)
文摘To achieve normal velocity reconstruction of a vibrating surface with sparse mea- surement points, a reconstruction method is proposed by exploiting of acoustic radiation modes as expansion functions, which are capable of describing the geometric shape of a vibrating surface. Firstly, acoustic radiation modes of the vibrating surface are calculated and the rela- tionship between normal velocity and acoustic radiation modes is built. Then actual measured normal velocity values are expressed by corresponding acoustic radiation modes and the expan- sion coefficients are calculated. Subsequently, all normal velocity values can be reconstructed by the obtained expansion coefficients. Experimental validations have been performed by a double-layer steel cylindrical shell with enclosed ends in an anechoic water tank. Two cases with different wavenumber components distribution were designed by a vibration shaker and a rotor device respectively. Two experimental results both show that actual vibration distribution cannot be revealed exactly by the sparse measurement points, which corresponds to severe loss of vibration related wavenumber components. On the other hand, normal velocity and corresponding wavenumber components can be restored accurately in both two wavenumber components distribution cases according to the proposed method, which demonstrates obvious effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China under Grant Nos.61902015,61872026,and 61672085the Nantong Application Research Plan under Grant No:JC2019106the Open Project of State Key Laboratory of Information Security(Institute of Information Engineering,Chinese Academy of Sciences)under Grant No.2020-MS-07.
文摘Bug isolation is a popular approach for multi-fault localization(MFL),where all failed test cases are clustered into several groups,and then the failed test cases in each group combined with all passed test cases are used to localize only a single fault.However,existing clustering algorithms cannot always obtain completely correct clustering results,which is a potential threat for bug isolation based MFL approaches.To address this issue,we first analyze the influence of the accuracy of the clustering on the performance of MFL,and the results of a controlled study indicate that using the clustering algorithm with the highest accuracy can achieve the best performance of MFL.Moreover,previous studies on clustering algorithms also show that the elements in a higher density cluster have a higher similarity.Based on the above motivation,we propose a novel approach FATOC(One-Fault-at-a-Time via OPTICS Clustering).In particular,FATOC first leverages the OPTICS(Ordering Points to Identify the Clustering Structure)clustering algorithm to group failed test cases,and then identifies a cluster with the highest density.OPTICS clustering is a density-based clustering algorithm,which can reduce the misgrouping and calculate a density value for each cluster.Such a density value of each cluster is helpful for finding a cluster with the highest clustering effectiveness.FATOC then combines the failed test cases in this cluster with all passed test cases to localize a single-fault through the traditional spectrum-based fault localization(SBFL)formula.After this fault is localized and fixed,FATOC will use the same method to localize the next single-fault,until all the test cases are passed.Our evaluation results show that FATOC can significantly outperform the traditional SBFL technique and a state-of-the-art MFL approach MSeer on 804 multi-faulty versions from nine real-world programs.Specifically,FATOC’s performance is 10.32%higher than that of traditional SBFL when using Ochiai formula in terms of metric A-EXAM.Besides,the results also indicate that,when checking 1%,3%and 5%statements of all subject programs,FATOC can locate 36.91%,48.50%and 66.93%of all faults respectively,which is also better than the traditional SBFL and the MFL approach MSeer.