With the development of virtual reality (VR) technology, more and more industries are beginning to integrate with VR technology. In response to the problem of not being able to directly render the lighting effect of C...With the development of virtual reality (VR) technology, more and more industries are beginning to integrate with VR technology. In response to the problem of not being able to directly render the lighting effect of Caideng in digital Caideng scenes, this article analyzes the lighting model. It combines it with the lighting effect of Caideng scenes to design an optimized lighting model algorithm that fuses the bidirectional transmission distribution function (BTDF) model. This algorithm can efficiently render the lighting effect of Caideng models in a virtual environment. And using image optimization processing methods, the immersive experience effect on the VR is enhanced. Finally, a Caideng roaming interactive system was designed based on this method. The results show that the frame rate of the system is stable during operation, maintained above 60 fps, and has a good immersive experience.展开更多
Point-based rendering is a common method widely used in point cloud rendering.It realizes rendering by turning the points into the base geometry.The critical step in point-based rendering is to set an appropriate rend...Point-based rendering is a common method widely used in point cloud rendering.It realizes rendering by turning the points into the base geometry.The critical step in point-based rendering is to set an appropriate rendering radius for the base geometry,usually calculated using the average Euclidean distance of the N nearest neighboring points to the rendered point.This method effectively reduces the appearance of empty spaces between points in rendering.However,it also causes the problem that the rendering radius of outlier points far away from the central region of the point cloud sequence could be large,which impacts the perceptual quality.To solve the above problem,we propose an algorithm for point-based point cloud rendering through outlier detection to optimize the perceptual quality of rendering.The algorithm determines whether the detected points are outliers using a combination of local and global geometric features.For the detected outliers,the minimum radius is used for rendering.We examine the performance of the proposed method in terms of both objective quality and perceptual quality.The experimental results show that the peak signal-to-noise ratio(PSNR)of the point cloud sequences is improved under all geometric quantization,and the PSNR improvement ratio is more evident in dense point clouds.Specifically,the PSNR of the point cloud sequences is improved by 3.6%on average compared with the original algorithm.The proposed method significantly improves the perceptual quality of the rendered point clouds and the results of ablation studies prove the feasibility and effectiveness of the proposed method.展开更多
Haptic rendering is referred to as an approach for complementing graphical model of the virtual object with mechanics- based properties. As a result, when the user interacts with the virtual object through a haptic de...Haptic rendering is referred to as an approach for complementing graphical model of the virtual object with mechanics- based properties. As a result, when the user interacts with the virtual object through a haptic device, the object can graphically deflect or deform following laws of mechanics. In addition, the user is able to feel the resulting interaction force when interacting with the virtual object. This paper presents a study of defining the levels-of-detail (LOD) in point-based computational mechanics for haptic rendering of objects. The approach uses the description of object as a set of sampled points. In comparison with the finite element method (FEM), point-based approach does not rely on any predefined mesh representation and depends on the point representation of the volume of the object. Different from solving the governing equations of motion representing the entire object based on pre-defined mesh representation which is used in FEM, in point-based modeling approach, the number of points involved in the computation of displacement/deformation can be adaptively defined during the solution cycle. This frame work can offer the implementation of the notion for levels-of-detail techniques for which can be used to tune the haptic rendering environment for in- creased realism and computational efficiency. This paper presents some initial experimental studies in implementing LOD in such environment.展开更多
In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rend...In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.展开更多
Learning and inferring underlying motion patterns of captured 2D scenes and then re-creating dynamic evolution consistent with the real-world natural phenomena have high appeal for graphics and animation.To bridge the...Learning and inferring underlying motion patterns of captured 2D scenes and then re-creating dynamic evolution consistent with the real-world natural phenomena have high appeal for graphics and animation.To bridge the technical gap between virtual and real environments,we focus on the inverse modeling and reconstruction of visually consistent and property-verifiable oceans,taking advantage of deep learning and differentiable physics to learn geometry and constitute waves in a self-supervised manner.First,we infer hierarchical geometry using two networks,which are optimized via the differentiable renderer.We extract wave components from the sequence of inferred geometry through a network equipped with a differentiable ocean model.Then,ocean dynamics can be evolved using the reconstructed wave components.Through extensive experiments,we verify that our new method yields satisfactory results for both geometry reconstruction and wave estimation.Moreover,the new framework has the inverse modeling potential to facilitate a host of graphics applications,such as the rapid production of physically accurate scene animation and editing guided by real ocean scenes.展开更多
The glinty details from complex microstructures significantly enhance rendering realism.However,the previous methods use high-resolution normal maps to define each micro-geometry,which requires huge memory overhead.Th...The glinty details from complex microstructures significantly enhance rendering realism.However,the previous methods use high-resolution normal maps to define each micro-geometry,which requires huge memory overhead.This paper observes that many self-similarity materials have independent structural characteristics,which we define as tiny example microstructures.We propose a procedural model to represent microstructures implicitly by performing spatial transformations and spatial distribution on tiny examples.Furthermore,we precompute normal distribution functions(NDFs)by 4D Gaussians for tiny examples and store them in multi-scale NDF maps.Combined with a tiny example based NDF evaluation method,complex glinty surfaces can be rendered simply by texture sampling.The experimental results show that our tiny example based the microstructure rendering method is GPU-friendly,successfully reproducing high-frequency reflection features of different microstructures in real time with low memory and computational overhead.展开更多
Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of eleva...Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm.展开更多
Simulation and rendering of large-scale natural environments, especially the ocean, has always been one of the hot issues in computer graphics, which can provide realism for various applications such as computer game,...Simulation and rendering of large-scale natural environments, especially the ocean, has always been one of the hot issues in computer graphics, which can provide realism for various applications such as computer game, movie and military usage. Simulation of ocean environment is often lack of realism for real-time application due to its complexity of dynamic waves. In this paper, a method based on FFT Wave model is proposed to solve this problem, which can also simulate the ocean optic property with atmosphere scattering. Furthermore, our method has a lot of advantages including global ocean dataset support, real-time, dynamic reflection of ocean, the foam on the wave, smooth transition from deep ocean to seacoast, etc. The experimental results demonstrate the realism and effectiveness of our approach.展开更多
After a review of the planar garment effect production of pattern fabric and a brief introduction of the concept of texture mapping, the theory of 2D texture mapping onto 3D surface is stated. And the calculation proc...After a review of the planar garment effect production of pattern fabric and a brief introduction of the concept of texture mapping, the theory of 2D texture mapping onto 3D surface is stated. And the calculation procedures of texture mapping, such as texture image preprocess,mannequin and garment surface modeling, mapping relationship definition, shading/texturing model creation, and graphic transformation,are exploited to produce a real 3D garment rendring effect.Finally, the conclusion is given about the realization envlronment and affecting factors of the final images.展开更多
文摘With the development of virtual reality (VR) technology, more and more industries are beginning to integrate with VR technology. In response to the problem of not being able to directly render the lighting effect of Caideng in digital Caideng scenes, this article analyzes the lighting model. It combines it with the lighting effect of Caideng scenes to design an optimized lighting model algorithm that fuses the bidirectional transmission distribution function (BTDF) model. This algorithm can efficiently render the lighting effect of Caideng models in a virtual environment. And using image optimization processing methods, the immersive experience effect on the VR is enhanced. Finally, a Caideng roaming interactive system was designed based on this method. The results show that the frame rate of the system is stable during operation, maintained above 60 fps, and has a good immersive experience.
文摘Point-based rendering is a common method widely used in point cloud rendering.It realizes rendering by turning the points into the base geometry.The critical step in point-based rendering is to set an appropriate rendering radius for the base geometry,usually calculated using the average Euclidean distance of the N nearest neighboring points to the rendered point.This method effectively reduces the appearance of empty spaces between points in rendering.However,it also causes the problem that the rendering radius of outlier points far away from the central region of the point cloud sequence could be large,which impacts the perceptual quality.To solve the above problem,we propose an algorithm for point-based point cloud rendering through outlier detection to optimize the perceptual quality of rendering.The algorithm determines whether the detected points are outliers using a combination of local and global geometric features.For the detected outliers,the minimum radius is used for rendering.We examine the performance of the proposed method in terms of both objective quality and perceptual quality.The experimental results show that the peak signal-to-noise ratio(PSNR)of the point cloud sequences is improved under all geometric quantization,and the PSNR improvement ratio is more evident in dense point clouds.Specifically,the PSNR of the point cloud sequences is improved by 3.6%on average compared with the original algorithm.The proposed method significantly improves the perceptual quality of the rendered point clouds and the results of ablation studies prove the feasibility and effectiveness of the proposed method.
文摘Haptic rendering is referred to as an approach for complementing graphical model of the virtual object with mechanics- based properties. As a result, when the user interacts with the virtual object through a haptic device, the object can graphically deflect or deform following laws of mechanics. In addition, the user is able to feel the resulting interaction force when interacting with the virtual object. This paper presents a study of defining the levels-of-detail (LOD) in point-based computational mechanics for haptic rendering of objects. The approach uses the description of object as a set of sampled points. In comparison with the finite element method (FEM), point-based approach does not rely on any predefined mesh representation and depends on the point representation of the volume of the object. Different from solving the governing equations of motion representing the entire object based on pre-defined mesh representation which is used in FEM, in point-based modeling approach, the number of points involved in the computation of displacement/deformation can be adaptively defined during the solution cycle. This frame work can offer the implementation of the notion for levels-of-detail techniques for which can be used to tune the haptic rendering environment for in- creased realism and computational efficiency. This paper presents some initial experimental studies in implementing LOD in such environment.
文摘In recent years, the computer drawing technology that deals with three-dimensional (3D) design of footwear has become hot topics. Rhino is a kind of common and practical 3D design software with strong drawing and rendering graphics function, which is widely used to design industrial products. In this paper, through decomposition and modeling, modeling and drawing methods were analyzed in various parts of footwear by Rhino, as well as the smooth technology and adjustments to its profile curve by an example of lady's high boots. Finally, through a series introductions of rendering effects for footwear in color, light perception, grain characteristic, and 3D graphics, the main technical essential is achieved and difficulties in design of overall footwear styles are solved.
基金sponsored by grants from the National Natural Science Foundation of China(62002010,61872347)the CAMS Innovation Fund for Medical Sciences(2019-I2M5-016)the Special Plan for the Development of Distinguished Young Scientists of ISCAS(Y8RC535018).
文摘Learning and inferring underlying motion patterns of captured 2D scenes and then re-creating dynamic evolution consistent with the real-world natural phenomena have high appeal for graphics and animation.To bridge the technical gap between virtual and real environments,we focus on the inverse modeling and reconstruction of visually consistent and property-verifiable oceans,taking advantage of deep learning and differentiable physics to learn geometry and constitute waves in a self-supervised manner.First,we infer hierarchical geometry using two networks,which are optimized via the differentiable renderer.We extract wave components from the sequence of inferred geometry through a network equipped with a differentiable ocean model.Then,ocean dynamics can be evolved using the reconstructed wave components.Through extensive experiments,we verify that our new method yields satisfactory results for both geometry reconstruction and wave estimation.Moreover,the new framework has the inverse modeling potential to facilitate a host of graphics applications,such as the rapid production of physically accurate scene animation and editing guided by real ocean scenes.
基金supported by the National Key Research and Development Program of China under Grant No.2022YFB3303203the National Natural Science Foundation of China under Grant No.62272275.
文摘The glinty details from complex microstructures significantly enhance rendering realism.However,the previous methods use high-resolution normal maps to define each micro-geometry,which requires huge memory overhead.This paper observes that many self-similarity materials have independent structural characteristics,which we define as tiny example microstructures.We propose a procedural model to represent microstructures implicitly by performing spatial transformations and spatial distribution on tiny examples.Furthermore,we precompute normal distribution functions(NDFs)by 4D Gaussians for tiny examples and store them in multi-scale NDF maps.Combined with a tiny example based NDF evaluation method,complex glinty surfaces can be rendered simply by texture sampling.The experimental results show that our tiny example based the microstructure rendering method is GPU-friendly,successfully reproducing high-frequency reflection features of different microstructures in real time with low memory and computational overhead.
基金Supported by the National Natural Science Foundation of China(61363075)the National High Technology Research and Development Program of China(863 Program)(2012AA12A308)the Yue Qi Young Scholars Program of China University of Mining&Technology,Beijing(800015Z1117)
文摘Aiming to deal with the difficult issues of terrain data model simplification and crack disposal,the paper proposed an improved level of detail(LOD)terrain rendering algorithm,in which a variation coefficient of elevation is introduced to express the undulation of topography.Then the coefficient is used to construct a node evaluation function in the terrain data model simplification step.Furthermore,an edge reduction strategy is combined with the improved restrictive quadtree segmentation to handle the crack problem.The experiment results demonstrated that the proposed method can reduce the amount of rendering triangles and enhance the rendering speed on the premise of ensuring the rendering effect compared with a traditional LOD algorithm.
基金Supported by National Natural Science Foundation of China(Nos.6117020561472010 and 61421062)+2 种基金National Key Technology Support Program(No.2013BAK03B07)National Key Technology R&D Program(2015BAK01B06)Shenzhen Gov Projects(JCYJ20130331144416448)
文摘Simulation and rendering of large-scale natural environments, especially the ocean, has always been one of the hot issues in computer graphics, which can provide realism for various applications such as computer game, movie and military usage. Simulation of ocean environment is often lack of realism for real-time application due to its complexity of dynamic waves. In this paper, a method based on FFT Wave model is proposed to solve this problem, which can also simulate the ocean optic property with atmosphere scattering. Furthermore, our method has a lot of advantages including global ocean dataset support, real-time, dynamic reflection of ocean, the foam on the wave, smooth transition from deep ocean to seacoast, etc. The experimental results demonstrate the realism and effectiveness of our approach.
文摘After a review of the planar garment effect production of pattern fabric and a brief introduction of the concept of texture mapping, the theory of 2D texture mapping onto 3D surface is stated. And the calculation procedures of texture mapping, such as texture image preprocess,mannequin and garment surface modeling, mapping relationship definition, shading/texturing model creation, and graphic transformation,are exploited to produce a real 3D garment rendring effect.Finally, the conclusion is given about the realization envlronment and affecting factors of the final images.