针对光照不均匀和水表表盘雾化的指针式水表在读数检测时出现漏检、误检等问题,提出一种基于改进YOLOv5s的指针式水表读数检测方法。首先,采用Mosaic、Mixup等数据增强方法,提高模型的泛化能力;其次,引入加权双向特征金字塔网络(bilater...针对光照不均匀和水表表盘雾化的指针式水表在读数检测时出现漏检、误检等问题,提出一种基于改进YOLOv5s的指针式水表读数检测方法。首先,采用Mosaic、Mixup等数据增强方法,提高模型的泛化能力;其次,引入加权双向特征金字塔网络(bilateral feature pyramid network, BiFPN)实现更高层次的特征融合使得水表图像的深层特征图和浅层特征图充分融合,提高网络的表达能力;然后,嵌入卷积注意力机制(convolutional block attention module, CBAM),在通道和空间双重维度上强化指针式水表子表盘示数特征;最后将完全交并比损失函数(complete intersection over union loss, CIoU-Loss)替换为SIoU_Loss(scylla intersection over union loss),提升边界框的回归精度。改进算法的mAP@0.5达到97.8%,比YOLOv5s原始网络提升了3.2%。实验结果表明:该算法能有效提高指针式水表的读数检测精度。展开更多
针对指针式仪表自动检测和读取示数时背景环境复杂、目标检测性能不足和读取示数误差大等问题,提出了一种基于CBAM-YOLOv3的指针式仪表自动检测和读数的方法。在YOLOv3(You Only Look Once-v3)基础上,引入注意力机制模块CBAM(Convolutio...针对指针式仪表自动检测和读取示数时背景环境复杂、目标检测性能不足和读取示数误差大等问题,提出了一种基于CBAM-YOLOv3的指针式仪表自动检测和读数的方法。在YOLOv3(You Only Look Once-v3)基础上,引入注意力机制模块CBAM(Convolutional block attention module),通过检测提取表盘区域,根据边界框位置信息剔除绝大部分背景。利用霍夫变换确定指针和表盘位置,采用模板匹配法寻找刻度起始点。以表盘中心为原点建立直角坐标系,根据指针和刻度间的角度关系读取示数。实验结果表明:仪表自动检测精度达到了99.72%,读数平均相对误差为0.44%。该算法具有较高的检测精度和较低的读数误差。展开更多
文摘针对光照不均匀和水表表盘雾化的指针式水表在读数检测时出现漏检、误检等问题,提出一种基于改进YOLOv5s的指针式水表读数检测方法。首先,采用Mosaic、Mixup等数据增强方法,提高模型的泛化能力;其次,引入加权双向特征金字塔网络(bilateral feature pyramid network, BiFPN)实现更高层次的特征融合使得水表图像的深层特征图和浅层特征图充分融合,提高网络的表达能力;然后,嵌入卷积注意力机制(convolutional block attention module, CBAM),在通道和空间双重维度上强化指针式水表子表盘示数特征;最后将完全交并比损失函数(complete intersection over union loss, CIoU-Loss)替换为SIoU_Loss(scylla intersection over union loss),提升边界框的回归精度。改进算法的mAP@0.5达到97.8%,比YOLOv5s原始网络提升了3.2%。实验结果表明:该算法能有效提高指针式水表的读数检测精度。