以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到...以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到定常解的稳定条件,确定解的稳定性。在此基础上,分析了参激项、自激项以及分数阶微分项参数对系统幅频特性的影响。结果表明:改变参激项系数主要影响系统的响应幅值和共振频率范围;改变自激项系数主要影响系统响应幅值和多值性;改变分数阶微分项系数和阶次对系统的动力学行为具有双重调节的作用。展开更多
In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a...In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.展开更多
通过多尺度法对Duffing-van der Pol系统的幅频响应特性进行研究,多频激励改变了单频激励条件下系统的振动状态。与Duffing系统相比,Duffing-van der Pol系统不但使系统主共振曲线发生了偏移,而且系统的振幅也发生了变化。经过分析得出...通过多尺度法对Duffing-van der Pol系统的幅频响应特性进行研究,多频激励改变了单频激励条件下系统的振动状态。与Duffing系统相比,Duffing-van der Pol系统不但使系统主共振曲线发生了偏移,而且系统的振幅也发生了变化。经过分析得出了Duffing-van der Pol系统主共振幅频特性曲线的偏移和振幅的改变与加入的多频激励的幅度和频率有关。利用Matlab对Duffing-van der Pol进行了数值仿真,仿真结果得出多频外激励改变了原有单频激励的振动状态,并且随着多频激励的幅值和频率的改变,系统的振动状态出现了一定规律的变化。对比研究了解析分析与数值仿真结果,得出的结论比较一致。展开更多
研究了Duffing-van der Pol振子在一类时滞反馈控制下零解的稳定性问题以及极限环的振幅和稳定性问题。依平均法和对时滞反馈控制项泰劳展开的截断得到的平均方程表明,零解的稳定性除与原方程中线性项的系数有关外,只与线性反馈有关,与...研究了Duffing-van der Pol振子在一类时滞反馈控制下零解的稳定性问题以及极限环的振幅和稳定性问题。依平均法和对时滞反馈控制项泰劳展开的截断得到的平均方程表明,零解的稳定性除与原方程中线性项的系数有关外,只与线性反馈有关,与非线性反馈无关。通过调整线性反馈的增益和时滞,可以使不稳定的零解变得稳定。零解发生Hopf分岔导致的周期解的振幅除与原方程中非线性项的系数有关外,与线性反馈和非线性反馈均有关。通过调整反馈增益和时滞,不仅可以控制极限环的振幅,还可以抑制极限环的产生。此外,根据平均方程还容易发现反馈时滞对系统动力学行为的影响具有周期性。数值仿真的结果验证了理论分析的正确性。展开更多
利用运算放大器和乘法器进行电路设计,对早期利用电子管实现的Van der Pol振荡器利用现代集成电路加以实现。文中还利用OrCAD PSpice对设计的电路进行了模拟,得到了Van der Pol振荡器输出信号的波形图,并利用文本文件作为OrCAD PSpice和...利用运算放大器和乘法器进行电路设计,对早期利用电子管实现的Van der Pol振荡器利用现代集成电路加以实现。文中还利用OrCAD PSpice对设计的电路进行了模拟,得到了Van der Pol振荡器输出信号的波形图,并利用文本文件作为OrCAD PSpice和Matlab之间的接口,将OrCAD PSpice仿真得到的波形在Matlab中进行处理,得到Van der Pol振荡器两个状态变量的相图,并以此说明了Van der Pol振荡器所具有的丰富的非线性动力学特性。展开更多
为了研究宽带噪声激励下含分数阶导数的van der Pol-Duffing振子的首次穿越问题,首先应用广义谐波平衡技术,将分数阶导数表示的回复力分解为等效拟线性阻尼力和拟线性回复力,获得不含分数阶导数的等效非线性随机系统;然后,应用随机平均...为了研究宽带噪声激励下含分数阶导数的van der Pol-Duffing振子的首次穿越问题,首先应用广义谐波平衡技术,将分数阶导数表示的回复力分解为等效拟线性阻尼力和拟线性回复力,获得不含分数阶导数的等效非线性随机系统;然后,应用随机平均法将等效非线性随机系统近似为一维扩散过程,再建立和求解相应的后向Kolmogorov方程,获得系统的条件可靠性函数和平均首次穿越时间计算式;最后,通过实验结果表明,所提方法与蒙特卡罗法模拟结果吻合得非常好;系统的可靠性随分数阶数的增加而提高;分数阶导数表示的回复力不能简单地当作一类特殊的阻尼力.展开更多
研究了具有时滞耦合的n个van der Pol振子系统中发生的弱共振双Hopf分岔.应用改进的多尺度方法,得到了2∶5共振的复振幅方程.通过将复振幅设为极坐标形式,将复振幅方程转化为一个二维的实振幅系统.通过研究实振幅方程的平衡点及其稳定性...研究了具有时滞耦合的n个van der Pol振子系统中发生的弱共振双Hopf分岔.应用改进的多尺度方法,得到了2∶5共振的复振幅方程.通过将复振幅设为极坐标形式,将复振幅方程转化为一个二维的实振幅系统.通过研究实振幅方程的平衡点及其稳定性,对系统在2∶5共振点附近的动力学行为进行了开折和分类.得到了一些有趣的动力学现象,如振幅死区、周期解和双稳态解等,相应的数值模拟验证了理论结果的正确性.展开更多
回顾了对MOS LC差分振荡器的认识现状。通过简单的推导和Van der Pol方程现有结论,得到了交叉耦合MOS特性对振荡器性能的影响。这些结论包括:1)起振条件;2)输出幅度与参数间的解析表达式;3)振荡器输出频率与LC谐振回路和交叉耦合MOS管...回顾了对MOS LC差分振荡器的认识现状。通过简单的推导和Van der Pol方程现有结论,得到了交叉耦合MOS特性对振荡器性能的影响。这些结论包括:1)起振条件;2)输出幅度与参数间的解析表达式;3)振荡器输出频率与LC谐振回路和交叉耦合MOS管非线性特性影响的关系;4)过渡过程的时间常数;5)振荡器输出的谐波特性。这些结论揭示了MOS LC差分振荡器新的现象,对设计者了解振荡器的工作状态和优化设计有一定的参考意义。展开更多
研究了含有两个分岔参数的多频激励下Duffing-van der Pol系统的分岔特性.分3种情况进行了讨论:情形1,将λ1看成分岔参数;情形2,将λ2看成分岔参数;情形3,将λ1和λ2都看成分岔参数.根据转迁集的定义,不同的情况下,整个参数空间都被分...研究了含有两个分岔参数的多频激励下Duffing-van der Pol系统的分岔特性.分3种情况进行了讨论:情形1,将λ1看成分岔参数;情形2,将λ2看成分岔参数;情形3,将λ1和λ2都看成分岔参数.根据转迁集的定义,不同的情况下,整个参数空间都被分成了若干个不同的区域,得到了各个参数空间上系统的分岔图,从而为该类系统的参数优化控制奠定了基础.展开更多
研究了 Van der Pol-Duffing振子在简谐与随机噪声联合激励下的响应问题。用参数变换法使方程出现小参数 ,用多尺度法分离系统的快变项 ,讨论系统的阻尼项、非线性项和随机项等参数对系统响应的影响。理论分析和数值模拟表明 ,当随机激...研究了 Van der Pol-Duffing振子在简谐与随机噪声联合激励下的响应问题。用参数变换法使方程出现小参数 ,用多尺度法分离系统的快变项 ,讨论系统的阻尼项、非线性项和随机项等参数对系统响应的影响。理论分析和数值模拟表明 ,当随机激励强度增大时 ,系统的响应可从一个极限环变为一个扩散的极限环 ;在一定的条件下 ,系统可有两个稳定的稳态解及随机跳跃现象。展开更多
基于9阶van der Pol方程的分岔结果,设计了1个平衡点和2个极限环共存的三稳态电路.利用平均法分析了9阶van der Pol方程的分岔性质,设计了能够实现三稳态现象的无量纲方程的系统参数.根据基尔霍夫电路定理,利用运算放大器和模拟乘法器...基于9阶van der Pol方程的分岔结果,设计了1个平衡点和2个极限环共存的三稳态电路.利用平均法分析了9阶van der Pol方程的分岔性质,设计了能够实现三稳态现象的无量纲方程的系统参数.根据基尔霍夫电路定理,利用运算放大器和模拟乘法器等元件,构建了9阶van der Pol方程的电路原理图,并通过PSpice仿真和硬件电路试验验证了该电路的可行性和可靠性.试验结果表明,该电路系统中有1个稳定平衡点与2个稳定极限环共存的现象,为研究确定性激励以及随机激励下三稳态系统的动力学行为奠定了基础.展开更多
本文研究了不确定Van der Pol混沌系统的同步问题,并进行了基于规则的模糊逻辑控制器(FLC)的控制。首先寻找主从Van der Pol混沌系统满足Lyapunov稳定性理论的条件,在此基础上建立模糊规则,设计模糊控制器,实现不确定混沌系统的同步。...本文研究了不确定Van der Pol混沌系统的同步问题,并进行了基于规则的模糊逻辑控制器(FLC)的控制。首先寻找主从Van der Pol混沌系统满足Lyapunov稳定性理论的条件,在此基础上建立模糊规则,设计模糊控制器,实现不确定混沌系统的同步。通过不确定VanderPol混沌系统的两组仿真结果,验证了模糊同步控制方法具有很好的鲁棒性。最后为了进一步验证该方法的有效性,本文在相同条件下,利用反馈控制的方法实现不确定主从VanderPol混沌系统的同步,然后再将此方法的仿真结果与本文的模糊同步控制方法的仿真结果在稳态误差及同步所需时间这两个方面进行对比分析。分析结果验证了本文同步方法的可行性及有效性。展开更多
研究多自由度Van der Pol型非线性振动系统振幅增大的控制,设计反馈控制器,用数值方法对控制系统的幅值进行了计算,绘制了在不同控制参数下,系统响应的时间历程曲线和极限环.研究表明通过调整控制参数,能够增大极限环的幅值,有工程应用...研究多自由度Van der Pol型非线性振动系统振幅增大的控制,设计反馈控制器,用数值方法对控制系统的幅值进行了计算,绘制了在不同控制参数下,系统响应的时间历程曲线和极限环.研究表明通过调整控制参数,能够增大极限环的幅值,有工程应用价值,对高维系统的分岔控制研究有一定的理论意义.展开更多
采用增量谐波平衡方法导出强迫Van der Pol振子稳态周期响应的IHB计算格式.以外激励频率为参数进行跟踪延续获得了系统主共振时的幅频响应特性,并作出了特定系统参数下的周期响应极限环.其结果与Runge-Kutta方法进行了对比,结果表明该...采用增量谐波平衡方法导出强迫Van der Pol振子稳态周期响应的IHB计算格式.以外激励频率为参数进行跟踪延续获得了系统主共振时的幅频响应特性,并作出了特定系统参数下的周期响应极限环.其结果与Runge-Kutta方法进行了对比,结果表明该算法精度可以灵活控制,且收敛速度快,结果可靠,是非线性电路系统等工程应用中强非线性问题动力学特性分析的有效方法.展开更多
文摘以含分数阶微分项的van der Pol-Mathieu方程为对象,研究了谐波激励作用下主共振的动力学行为和稳定性。采用平均法得到了方程近似解析解,通过数值方法验证了解析结果的准确性。建立了系统稳态响应的幅频方程,利用Lyapunov第一方法得到定常解的稳定条件,确定解的稳定性。在此基础上,分析了参激项、自激项以及分数阶微分项参数对系统幅频特性的影响。结果表明:改变参激项系数主要影响系统的响应幅值和共振频率范围;改变自激项系数主要影响系统响应幅值和多值性;改变分数阶微分项系数和阶次对系统的动力学行为具有双重调节的作用。
文摘In this paper, we define some non-elementary amplitude functions that are giving solutions to some well-known second-order nonlinear ODEs and the Lorenz equations, but not the chaos case. We are giving the solutions a name, a symbol and putting them into a group of functions and into the context of other functions. These solutions are equal to the amplitude, or upper limit of integration in a non-elementary integral that can be arbitrary. In order to define solutions to some short second-order nonlinear ODEs, we will make an extension to the general amplitude function. The only disadvantage is that the first derivative to these solutions contains an integral that disappear at the second derivation. We will also do a second extension: the two-integral amplitude function. With this extension we have the solution to a system of ODEs having a very strange behavior. Using the extended amplitude functions, we can define solutions to many short second-order nonlinear ODEs.
文摘通过多尺度法对Duffing-van der Pol系统的幅频响应特性进行研究,多频激励改变了单频激励条件下系统的振动状态。与Duffing系统相比,Duffing-van der Pol系统不但使系统主共振曲线发生了偏移,而且系统的振幅也发生了变化。经过分析得出了Duffing-van der Pol系统主共振幅频特性曲线的偏移和振幅的改变与加入的多频激励的幅度和频率有关。利用Matlab对Duffing-van der Pol进行了数值仿真,仿真结果得出多频外激励改变了原有单频激励的振动状态,并且随着多频激励的幅值和频率的改变,系统的振动状态出现了一定规律的变化。对比研究了解析分析与数值仿真结果,得出的结论比较一致。
文摘研究了Duffing-van der Pol振子在一类时滞反馈控制下零解的稳定性问题以及极限环的振幅和稳定性问题。依平均法和对时滞反馈控制项泰劳展开的截断得到的平均方程表明,零解的稳定性除与原方程中线性项的系数有关外,只与线性反馈有关,与非线性反馈无关。通过调整线性反馈的增益和时滞,可以使不稳定的零解变得稳定。零解发生Hopf分岔导致的周期解的振幅除与原方程中非线性项的系数有关外,与线性反馈和非线性反馈均有关。通过调整反馈增益和时滞,不仅可以控制极限环的振幅,还可以抑制极限环的产生。此外,根据平均方程还容易发现反馈时滞对系统动力学行为的影响具有周期性。数值仿真的结果验证了理论分析的正确性。
文摘利用运算放大器和乘法器进行电路设计,对早期利用电子管实现的Van der Pol振荡器利用现代集成电路加以实现。文中还利用OrCAD PSpice对设计的电路进行了模拟,得到了Van der Pol振荡器输出信号的波形图,并利用文本文件作为OrCAD PSpice和Matlab之间的接口,将OrCAD PSpice仿真得到的波形在Matlab中进行处理,得到Van der Pol振荡器两个状态变量的相图,并以此说明了Van der Pol振荡器所具有的丰富的非线性动力学特性。
文摘为了研究宽带噪声激励下含分数阶导数的van der Pol-Duffing振子的首次穿越问题,首先应用广义谐波平衡技术,将分数阶导数表示的回复力分解为等效拟线性阻尼力和拟线性回复力,获得不含分数阶导数的等效非线性随机系统;然后,应用随机平均法将等效非线性随机系统近似为一维扩散过程,再建立和求解相应的后向Kolmogorov方程,获得系统的条件可靠性函数和平均首次穿越时间计算式;最后,通过实验结果表明,所提方法与蒙特卡罗法模拟结果吻合得非常好;系统的可靠性随分数阶数的增加而提高;分数阶导数表示的回复力不能简单地当作一类特殊的阻尼力.
文摘研究了具有时滞耦合的n个van der Pol振子系统中发生的弱共振双Hopf分岔.应用改进的多尺度方法,得到了2∶5共振的复振幅方程.通过将复振幅设为极坐标形式,将复振幅方程转化为一个二维的实振幅系统.通过研究实振幅方程的平衡点及其稳定性,对系统在2∶5共振点附近的动力学行为进行了开折和分类.得到了一些有趣的动力学现象,如振幅死区、周期解和双稳态解等,相应的数值模拟验证了理论结果的正确性.
文摘回顾了对MOS LC差分振荡器的认识现状。通过简单的推导和Van der Pol方程现有结论,得到了交叉耦合MOS特性对振荡器性能的影响。这些结论包括:1)起振条件;2)输出幅度与参数间的解析表达式;3)振荡器输出频率与LC谐振回路和交叉耦合MOS管非线性特性影响的关系;4)过渡过程的时间常数;5)振荡器输出的谐波特性。这些结论揭示了MOS LC差分振荡器新的现象,对设计者了解振荡器的工作状态和优化设计有一定的参考意义。
基金Supported by the PhD Programs Foundation of Ministry of Education of China(20070128001)the Innovation Program of Shanghai Municipal Education Commission (09YZ239)the Research Foundation of Shanghai Institute of Technology (YJ2009-12)
文摘本文研究了Adomian分解方法在非线性分数阶微分方程求解中的应用. 利用Riemann-Liouville分数阶导数和Adomian分解方法, 将Duffing方程和Van der Pol方程联合在一个分数阶方程中,并获得了此方程的解析近似解.
文摘研究了含有两个分岔参数的多频激励下Duffing-van der Pol系统的分岔特性.分3种情况进行了讨论:情形1,将λ1看成分岔参数;情形2,将λ2看成分岔参数;情形3,将λ1和λ2都看成分岔参数.根据转迁集的定义,不同的情况下,整个参数空间都被分成了若干个不同的区域,得到了各个参数空间上系统的分岔图,从而为该类系统的参数优化控制奠定了基础.
文摘研究了 Van der Pol-Duffing振子在简谐与随机噪声联合激励下的响应问题。用参数变换法使方程出现小参数 ,用多尺度法分离系统的快变项 ,讨论系统的阻尼项、非线性项和随机项等参数对系统响应的影响。理论分析和数值模拟表明 ,当随机激励强度增大时 ,系统的响应可从一个极限环变为一个扩散的极限环 ;在一定的条件下 ,系统可有两个稳定的稳态解及随机跳跃现象。
文摘基于9阶van der Pol方程的分岔结果,设计了1个平衡点和2个极限环共存的三稳态电路.利用平均法分析了9阶van der Pol方程的分岔性质,设计了能够实现三稳态现象的无量纲方程的系统参数.根据基尔霍夫电路定理,利用运算放大器和模拟乘法器等元件,构建了9阶van der Pol方程的电路原理图,并通过PSpice仿真和硬件电路试验验证了该电路的可行性和可靠性.试验结果表明,该电路系统中有1个稳定平衡点与2个稳定极限环共存的现象,为研究确定性激励以及随机激励下三稳态系统的动力学行为奠定了基础.
文摘本文研究了不确定Van der Pol混沌系统的同步问题,并进行了基于规则的模糊逻辑控制器(FLC)的控制。首先寻找主从Van der Pol混沌系统满足Lyapunov稳定性理论的条件,在此基础上建立模糊规则,设计模糊控制器,实现不确定混沌系统的同步。通过不确定VanderPol混沌系统的两组仿真结果,验证了模糊同步控制方法具有很好的鲁棒性。最后为了进一步验证该方法的有效性,本文在相同条件下,利用反馈控制的方法实现不确定主从VanderPol混沌系统的同步,然后再将此方法的仿真结果与本文的模糊同步控制方法的仿真结果在稳态误差及同步所需时间这两个方面进行对比分析。分析结果验证了本文同步方法的可行性及有效性。
文摘采用增量谐波平衡方法导出强迫Van der Pol振子稳态周期响应的IHB计算格式.以外激励频率为参数进行跟踪延续获得了系统主共振时的幅频响应特性,并作出了特定系统参数下的周期响应极限环.其结果与Runge-Kutta方法进行了对比,结果表明该算法精度可以灵活控制,且收敛速度快,结果可靠,是非线性电路系统等工程应用中强非线性问题动力学特性分析的有效方法.