<div style="text-align:justify;"> Polar codes using successive-cancellation decoding always suffer from high latency for its serial nature. Fast simplified successive-cancellation decoding algorithm im...<div style="text-align:justify;"> Polar codes using successive-cancellation decoding always suffer from high latency for its serial nature. Fast simplified successive-cancellation decoding algorithm improves the situation in theoretically but not performs well as expected in practical for the workload of nodes identification and the existence of many short blocks. Meanwhile, Neural network (NN) based decoders have appeared as potential candidates to replace conventional decoders for polar codes. But the exponentially increasing training complexity with information bits is unacceptable which means it is only suitable for short codes. In this paper, we present an improvement that increases decoding efficiency without degrading the error-correction performance. The long polar codes are divided into several sub-blocks, some of which can be decoded adopting fast maximum likelihood decoding method and the remained parts are replaced by several short codes NN decoders. The result shows that time steps the proposed algorithm need only equal to 79.8% of fast simplified successive-cancellation decoders require. Moreover, it has up to 21.2 times faster than successive-cancellation decoding algorithm. More importantly, the proposed algorithm decreases the hardness when applying in some degree. </div>展开更多
<div style="text-align:justify;"> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">This artic...<div style="text-align:justify;"> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's </span><span><a href="http://publicationethics.org/files/retraction%20guidelines.pdf"><span style="font-size:10.0pt;font-family:;" "="">Retraction Guidelines</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"="">. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.</span><span style="font-size:10.0pt;font-family:" color:black;"=""></span> </p> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">Please see the </span><span><a href="https://www.scirp.org/journal/paperinformation.aspx?paperid=101825"><span style="font-size:10.0pt;font-family:;" "="">article page</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"=""> for more details. </span><span><a href="https://www.scirp.org/pdf/opj_2020072814494052.pdf"><span style="font-size:10.0pt;font-family:;" "="">The full retraction notice</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"=""> in PDF is preceding the original paper which is marked "RETRACTED". </span> </p> <br /> </div>展开更多
Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list...Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.展开更多
Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtim...Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtimes during each SCL re-decoding attempt to prevent the correct path from being eliminated.The candidate positions for applying the SP scheme are selected by a shifting metric based on the probability that the elimination occurs.However,the number of exponential/logarithm operations involved in the SCL-SP-ωdecoder grows linearly with the number of information bits and list size,which leads to high computational complexity.In this paper,we present a detailed analysis of the SCL-SP-ωdecoder in terms of the decoding performance and complexity,which unveils that the choice of the shifting metric is essential for improving the decoding performance and reducing the re-decoding attempts simultaneously.Then,we introduce a simplified metric derived from the path metric(PM)domain,and a custom-tailored deep learning(DL)network is further designed to enhance the efficiency of the proposed simplified metric.The proposed metrics are both free of transcendental functions and hence,are more hardware-friendly than the existing metrics.Simulation results show that the proposed DL-aided metric provides the best error correction performance as comparison with the state of the art.展开更多
In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete mem...In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.展开更多
In order to change the path candidates, reduce the average list size, and make more paths pass cyclic redundancy check (CRC), multiple CRC-aided variable successive cancellation list (SCL) decoding algorithm is pr...In order to change the path candidates, reduce the average list size, and make more paths pass cyclic redundancy check (CRC), multiple CRC-aided variable successive cancellation list (SCL) decoding algorithm is proposed. In the decoding algorithm, the whole unfrozen bits are divided into several parts and each part is concatenated with a corresponding CRC code, except the last part which is concatenated with a whole unfrozen CRC code. Each CRC detection is performed, and only those satisfying each part CRC become the path candidates. A variable list is setup for each part to reduce the time complexity. Variable list size is setup for each part to reduce the time complexity until one survival path in each part can pass its corresponding CRC. The results show that the proposed algorithm can reduce the average list size, and the frame error rate (FER) performance, and has a better performance with the increase of the part number.展开更多
After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the cod...After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.展开更多
通过信道极化,极化码理论上证明可渐进达到香农限。文中研究极化码在高斯信道下的串行抵消(successive cancellation,SC)译码算法,提出了一种基于整数操作的最小和译码算法。算法中信道输出值被均匀量化后再取整数,作为SC译码器的输入;...通过信道极化,极化码理论上证明可渐进达到香农限。文中研究极化码在高斯信道下的串行抵消(successive cancellation,SC)译码算法,提出了一种基于整数操作的最小和译码算法。算法中信道输出值被均匀量化后再取整数,作为SC译码器的输入;节点更新使用最小和算法,更新过程不需要量化操作,直接使用信道输出值量化后的整数值。数值仿真结果表明,在信噪比小于4 d B时,译码性能与基于浮点运算的原始SC译码一致;当误比特率为10-5时,提出的算法与原始SC译码的信噪比相差0.2 d B。所提出的算法便于硬件实现,运算中变量的大小都用8比特整数表示。展开更多
文摘<div style="text-align:justify;"> Polar codes using successive-cancellation decoding always suffer from high latency for its serial nature. Fast simplified successive-cancellation decoding algorithm improves the situation in theoretically but not performs well as expected in practical for the workload of nodes identification and the existence of many short blocks. Meanwhile, Neural network (NN) based decoders have appeared as potential candidates to replace conventional decoders for polar codes. But the exponentially increasing training complexity with information bits is unacceptable which means it is only suitable for short codes. In this paper, we present an improvement that increases decoding efficiency without degrading the error-correction performance. The long polar codes are divided into several sub-blocks, some of which can be decoded adopting fast maximum likelihood decoding method and the remained parts are replaced by several short codes NN decoders. The result shows that time steps the proposed algorithm need only equal to 79.8% of fast simplified successive-cancellation decoders require. Moreover, it has up to 21.2 times faster than successive-cancellation decoding algorithm. More importantly, the proposed algorithm decreases the hardness when applying in some degree. </div>
文摘<div style="text-align:justify;"> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">This article has been retracted to straighten the academic record. In making this decision the Editorial Board follows COPE's </span><span><a href="http://publicationethics.org/files/retraction%20guidelines.pdf"><span style="font-size:10.0pt;font-family:;" "="">Retraction Guidelines</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"="">. The aim is to promote the circulation of scientific research by offering an ideal research publication platform with due consideration of internationally accepted standards on publication ethics. The Editorial Board would like to extend its sincere apologies for any inconvenience this retraction may have caused.</span><span style="font-size:10.0pt;font-family:" color:black;"=""></span> </p> <p style="text-align:justify;background:white;"> <span style="font-size:10.0pt;font-family:" color:black;"="">Please see the </span><span><a href="https://www.scirp.org/journal/paperinformation.aspx?paperid=101825"><span style="font-size:10.0pt;font-family:;" "="">article page</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"=""> for more details. </span><span><a href="https://www.scirp.org/pdf/opj_2020072814494052.pdf"><span style="font-size:10.0pt;font-family:;" "="">The full retraction notice</span></a></span><span style="font-size:10.0pt;font-family:" color:black;"=""> in PDF is preceding the original paper which is marked "RETRACTED". </span> </p> <br /> </div>
基金supported by the National Key R&D Program of China(2018YFB2101300)the National Science Foundation of China(61973056)
文摘Polar codes represent one of the major breakthroughs in 5G standard,and have been proven to be able to achieve the symmetric capacity of binary-input discrete memoryless channels using the successive cancellation list(SCL)decoding algorithm.However,the SCL algorithm suffers from a large amount of memory overhead.This paper proposes an adaptive simplified decoding algorithm for multiple cyclic redundancy check(CRC)polar codes.Simulation results show that the proposed method can reduce the decoding complexity and memory space.It can also acquire the performance gain in the low signal to noise ratio region.
基金supported in part by the National Key Research and Development Program of China under Grant 2018YFB1802303in part by the Zhejiang Provincial Natural Science Foundation of China under Grant LQ20F010010。
文摘Recently,a generalized successive cancellation list(SCL)decoder implemented with shiftedpruning(SP)scheme,namely the SCL-SP-ωdecoder,is presented for polar codes,which is able to shift the pruning window at mostωtimes during each SCL re-decoding attempt to prevent the correct path from being eliminated.The candidate positions for applying the SP scheme are selected by a shifting metric based on the probability that the elimination occurs.However,the number of exponential/logarithm operations involved in the SCL-SP-ωdecoder grows linearly with the number of information bits and list size,which leads to high computational complexity.In this paper,we present a detailed analysis of the SCL-SP-ωdecoder in terms of the decoding performance and complexity,which unveils that the choice of the shifting metric is essential for improving the decoding performance and reducing the re-decoding attempts simultaneously.Then,we introduce a simplified metric derived from the path metric(PM)domain,and a custom-tailored deep learning(DL)network is further designed to enhance the efficiency of the proposed simplified metric.The proposed metrics are both free of transcendental functions and hence,are more hardware-friendly than the existing metrics.Simulation results show that the proposed DL-aided metric provides the best error correction performance as comparison with the state of the art.
基金financially supported in part by National Key R&D Program of China(No.2018YFB1801402)in part by Huawei Technologies Co.,Ltd.
文摘In this paper,we innovatively associate the mutual information with the frame error rate(FER)performance and propose novel quantized decoders for polar codes.Based on the optimal quantizer of binary-input discrete memoryless channels(BDMCs),the proposed decoders quantize the virtual subchannels of polar codes to maximize mutual information(MMI)between source bits and quantized symbols.The nested structure of polar codes ensures that the MMI quantization can be implemented stage by stage.Simulation results show that the proposed MMI decoders with 4 quantization bits outperform the existing nonuniform quantized decoders that minimize mean-squared error(MMSE)with 4 quantization bits,and yield even better performance than uniform MMI quantized decoders with 5 quantization bits.Furthermore,the proposed 5-bit quantized MMI decoders approach the floating-point decoders with negligible performance loss.
基金supported by the National Natural Science Foundation of China (61475075,61271238)the Open Research Fund of Key Laboratory of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education (NYKL2015011)
文摘In order to change the path candidates, reduce the average list size, and make more paths pass cyclic redundancy check (CRC), multiple CRC-aided variable successive cancellation list (SCL) decoding algorithm is proposed. In the decoding algorithm, the whole unfrozen bits are divided into several parts and each part is concatenated with a corresponding CRC code, except the last part which is concatenated with a whole unfrozen CRC code. Each CRC detection is performed, and only those satisfying each part CRC become the path candidates. A variable list is setup for each part to reduce the time complexity. Variable list size is setup for each part to reduce the time complexity until one survival path in each part can pass its corresponding CRC. The results show that the proposed algorithm can reduce the average list size, and the frame error rate (FER) performance, and has a better performance with the increase of the part number.
基金supported in part by the Key Program of National Natural Science Foundation of China (No.92067202)in part by the National Natural Science Foundation of China (No.62071058)in part by the Major Key Project of PCL (PCL2021A15)。
文摘After the pursuit of seventy years,the invention of polar codes indicates that we have found the first capacity-achieving coding with low complexity construction and decoding,which is the great breakthrough of the coding theory in the past two decades.In this survey,we retrospect the history of polar codes and summarize the advancement in the past ten years.First,the primary principle of channel polarization is investigated such that the basic construction,coding method and the classic successive cancellation(SC)decoding are reviewed.Second,in order to improve the performance of the finite code length,we introduce the guiding principle and conclude five design criteria for the construction,design and implementation of the polar code in the practical communication system based on the exemplar schemes in the literature.Especially,we explain the design principle behind the concatenated coding and rate matching of polar codes in 5G wireless system.Furthermore,the improved SC decoding algorithms,such as SC list(SCL)decoding and SC stack(SCS)decoding etc.,are investigated and compared.Finally,the research prospects of polar codes for the future 6G communication system are explored,including the optimization of short polar codes,coding construction in fading channels,polar coded modulation and HARQ,and the polar coded transmission,namely polar processing.Predictably,as a new coding methodology,polar codes will shine a light on communication theory and unveil a revolution in transmission technology.
文摘通过信道极化,极化码理论上证明可渐进达到香农限。文中研究极化码在高斯信道下的串行抵消(successive cancellation,SC)译码算法,提出了一种基于整数操作的最小和译码算法。算法中信道输出值被均匀量化后再取整数,作为SC译码器的输入;节点更新使用最小和算法,更新过程不需要量化操作,直接使用信道输出值量化后的整数值。数值仿真结果表明,在信噪比小于4 d B时,译码性能与基于浮点运算的原始SC译码一致;当误比特率为10-5时,提出的算法与原始SC译码的信噪比相差0.2 d B。所提出的算法便于硬件实现,运算中变量的大小都用8比特整数表示。