Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) l...Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets.The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target.The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μm in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04 × 10^(13).The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing,and decrease with the increase of the diameter and fuel pressure of the target.The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important.The simulated results validate that the cos γ distribution laser design is reasonable and can achieve a symmetric pressure distribution.Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.展开更多
Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretica...Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretical models are reviewed in terms of the number of laser beams,system imperfection,and laser beam patterns.Utilizing a self-organizing system of charged particles on a sphere,a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams.As a result,such new configurations as“M48”and“M60”are found to show substantially higher illumination uniformity than any other existing direct drive systems.A new polar direct-drive scheme is proposed with the laser axes keeping off the target center,which can be applied to laser configurations designed for indirectly driven inertial fusion.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.11605178)the Science Challenging Project,China(Grant Nos.JCKY2016212A505 and TZ2016001)
文摘Low density and low convergence implosion occurs in the exploding-pusher target experiment, and generates neutrons isotropically to develop a high yield platform.In order to validate the performance of ShenGuang(SG) laser facility and test nuclear diagnostics, all 48-beam lasers with an on-target energy of 48 kJ were firstly used to drive room-temperature, DT gas-filled glass targets.The optimization has been carried out and optimal drive uniformity was obtained by the combination of beam repointing and target.The final irradiation uniformity of less than 5% on polar direct-drive capsules of 540 μm in diameter was achieved, and the highest thermonuclear yield of the polar direct-drive DT fuel implosion at the SG was 1.04 × 10^(13).The experiment results show neutron yields severely depend on the irradiation uniformity and laser timing,and decrease with the increase of the diameter and fuel pressure of the target.The thin CH ablator does not impact the implosion performance, but the laser drive uniformity is important.The simulated results validate that the cos γ distribution laser design is reasonable and can achieve a symmetric pressure distribution.Further optimization will focus on measuring the symmetry of the hot spot by self-emission imaging, increasing the diameter, and decreasing the fuel pressure.
基金This work was supported by the Japan Society for the Promotion of Science(JSPS).
文摘Optimum laser configurations are presented to achieve high illumination uniformity with directly driven inertial confinement fusion targets.Assuming axisymmetric absorption pattern of individual laser beams,theoretical models are reviewed in terms of the number of laser beams,system imperfection,and laser beam patterns.Utilizing a self-organizing system of charged particles on a sphere,a simple numerical model is provided to give an optimal configuration for an arbitrary number of laser beams.As a result,such new configurations as“M48”and“M60”are found to show substantially higher illumination uniformity than any other existing direct drive systems.A new polar direct-drive scheme is proposed with the laser axes keeping off the target center,which can be applied to laser configurations designed for indirectly driven inertial fusion.