We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the onl...We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the only reason for the phenomenon. By designing a wedge Nd:YVO4 crystal as the gain medium, the unexpected a-polarization is completely suppressed in the entire range of pump powers, and the polarization stability of the expected zc-polarized output is enhanced. With the output power increasing from threshold to the maximum power, no a-polarization lasing is observed. As a result, 25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.展开更多
In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that...In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.展开更多
We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film ...We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.展开更多
Lanthanide-based microlasers have attracted considerable attention owing to their large anti-Stokes shifts,multiple emission bands,and narrow linewidths.Various applications of microlasers,such as optical communicatio...Lanthanide-based microlasers have attracted considerable attention owing to their large anti-Stokes shifts,multiple emission bands,and narrow linewidths.Various applications of microlasers,such as optical communication,optical storage,and polarization imaging,require selecting the appropriate laser polarization mode and remote control of the laser properties.Here,we propose a unique plasmon-assisted method for the mode selection and remote control of microlasing using a lanthanide-based microcavity coupled with surface plasmon polaritons(SPPs)that propagate on a silver microplate.With this method,the transverse electrical(TE)mode of microlasers can be easily separated from the transverse magnetic(TM)mode.Because the SPPs excited on the silver microplate only support TM mode propagation,the reserved TE mode is resonance-enhanced in the microcavity and amplified by the local electromagnetic field.Meanwhile,lasingmode splitting can be observed under the near-field excitation of SPPs due to the coherent coupling between the microcavity and mirror microcavity modes.Benefiting from the long-distance propagation characteristics of tens of micrometers of SPPs on a silver microplate,remote excitation and control of upconversion microlasing can also be realized.These plasmon-assisted polarization mode-optional and remote-controllable upconversion microlasers have promising prospects in on-chip optoelectronic devices,encrypted optical information transmission,and high-precision sensors.展开更多
The corrosion mechanism of Zn-Cu-Tialloy added with La in 3% NaOH solution was investigated by electrochemicaltesting and SEM observation.Polarization curves manifested that the overallcorrosion kinetics of alloys are...The corrosion mechanism of Zn-Cu-Tialloy added with La in 3% NaOH solution was investigated by electrochemicaltesting and SEM observation.Polarization curves manifested that the overallcorrosion kinetics of alloys are under anodic control.The anodic passivation of the Zn-Cu-Tialloy is remarkably improved by the addition of La.Because La can effectively improve the hydrogen evolution/oxygen reduction over-potentialof alloy elements,and the rare earth oxide film plays an important role in insulation that can strengthen the dielectric properties of Zn-Cu-Tialloy,the corrosion resistance of Zn-Cu-Tialloy is made significantly better by adding a trace amount of La.The improvement of corrosion resistance is not positively correlated with the adding amount of La to alloy.The Zn-Cu-Ti-0.5La alloy displays the best corrosion resistance behavior.The corrosion form of the alloys mainly belongs to a selective corrosion and the main solid corrosion products are Zn(OH)_2 and ZnO.展开更多
基金supported by the National High Technology Research and Development Program of China(Grant No.2011AA030203)the National Basic Research Program of China(Grant No.2010CB923101)+1 种基金the National Natural Science Foundation of China(Grant No.61008001)the Natural Science Foundation of Shanxi Province,China(Grant No.2011021003-2)
文摘We observe the phenomenon of priority oscillation of the unexpected a-polarization in high-power Nd:YVO4 ring laser. The severe thermal lens of the a-polarized lasing, compared with the n-polarized lasing, is the only reason for the phenomenon. By designing a wedge Nd:YVO4 crystal as the gain medium, the unexpected a-polarization is completely suppressed in the entire range of pump powers, and the polarization stability of the expected zc-polarized output is enhanced. With the output power increasing from threshold to the maximum power, no a-polarization lasing is observed. As a result, 25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61471387,61271250,and 61571460)
文摘In this paper, a linear-to-circular polarization converter using a three-layer frequency selective surface based on Ishaped circular structure resonant is presented and investigated. Numerical simulations exhibit that when the normal ypolarized waves impinge on this device propagating towards +z direction, the two orthogonal components of the transmitted waves have a 90° phase difference as well as the nearly equal amplitudes at the resonant frequency of 7.04 GHz, which means that the left-hand circular polarization is realized in transmission. For validating the proposed design, a prototype which consists of 25 × 25 elements has been designed, manufactured and measured. The measured results are in good agreement with the simulated ones, showing that the polarization conversion transmission is over-3 dB in the frequency range of 5.22–8.08 GHz and the axial ratio is below 3 dB from 5.86 GHz to 7.34 GHz.
基金Project supported by the Serving Local Special Project of Shaanxi Provincial Department of Education of China (Grant No. 19JC040)the National Natural Science Foundation of China (Grant No. 61905193)。
文摘We report a high repetition frequency, high power stability and low laser noise laser-diode(LD) end-pumped Nd: YAG ceramic passively Q-switched laser at 1123 nm based on a Ti_(3)C_(2)T_(x)-polyvinyl alcohol(PVA) film as a saturable absorber(SA). A Brewster polarizer(BP) and a birefringent crystal(BC) are incorporated to enable frequency selection and filtering for the passively Q-switched 1123 nm pulsed laser to improve the power stability and reduce the noise. When the pump power is 5.1 W, an average output power of 457.9 m W is obtained, corresponding to a repetition frequency of 1.09 MHz,a pulse width of 56 ns, a spectral line width of 0.65 nm, a power instability of ±0.92%, and a laser noise of 0.89%.The successful implementation of the “Ti_(3)C_(2)T_(x)-PVA film passively Q-switching” combined with “frequency selection and filtering of BP + BC” technology path provides a valuable reference for developing pulsed laser with high repetition frequency, high stability and low noise.
基金supported by the National Natural Science Foundation of China(Grant Nos.U22A6005,92150110,12074237,and 12304426)the National Key R&D Program of China(Grant Nos.2020YFA0211300 and 2021YFA1201500)+3 种基金the Natural Science Foundation of Shaanxi Province(Grant No.2024JC-JCQN-07)the Fundamental Science Foundation of Shaanxi(Grant No.22JSZ010)the Fundamental Research Funds for Central Universities(Grant Nos.GK202201012,GK202308001,and LHRCTS23065)the Xi’an Young Elite Scientists Sponsorship Program(Grant No.1203050367)
文摘Lanthanide-based microlasers have attracted considerable attention owing to their large anti-Stokes shifts,multiple emission bands,and narrow linewidths.Various applications of microlasers,such as optical communication,optical storage,and polarization imaging,require selecting the appropriate laser polarization mode and remote control of the laser properties.Here,we propose a unique plasmon-assisted method for the mode selection and remote control of microlasing using a lanthanide-based microcavity coupled with surface plasmon polaritons(SPPs)that propagate on a silver microplate.With this method,the transverse electrical(TE)mode of microlasers can be easily separated from the transverse magnetic(TM)mode.Because the SPPs excited on the silver microplate only support TM mode propagation,the reserved TE mode is resonance-enhanced in the microcavity and amplified by the local electromagnetic field.Meanwhile,lasingmode splitting can be observed under the near-field excitation of SPPs due to the coherent coupling between the microcavity and mirror microcavity modes.Benefiting from the long-distance propagation characteristics of tens of micrometers of SPPs on a silver microplate,remote excitation and control of upconversion microlasing can also be realized.These plasmon-assisted polarization mode-optional and remote-controllable upconversion microlasers have promising prospects in on-chip optoelectronic devices,encrypted optical information transmission,and high-precision sensors.
基金Funded by the State Key Program of National Natural Science Foundation of China(No.U1502274)the Innovation Scientists and Technicians Troop Construction Projects of Henan Province(No.C20150014)+1 种基金the Program for Innovation Research Team(in Science and Technology)in University of Henan Province(No.14IRTSTHN007)the Key Scientific Program of Henan Province(No.16A430004)
文摘The corrosion mechanism of Zn-Cu-Tialloy added with La in 3% NaOH solution was investigated by electrochemicaltesting and SEM observation.Polarization curves manifested that the overallcorrosion kinetics of alloys are under anodic control.The anodic passivation of the Zn-Cu-Tialloy is remarkably improved by the addition of La.Because La can effectively improve the hydrogen evolution/oxygen reduction over-potentialof alloy elements,and the rare earth oxide film plays an important role in insulation that can strengthen the dielectric properties of Zn-Cu-Tialloy,the corrosion resistance of Zn-Cu-Tialloy is made significantly better by adding a trace amount of La.The improvement of corrosion resistance is not positively correlated with the adding amount of La to alloy.The Zn-Cu-Ti-0.5La alloy displays the best corrosion resistance behavior.The corrosion form of the alloys mainly belongs to a selective corrosion and the main solid corrosion products are Zn(OH)_2 and ZnO.