Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inhe...Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .展开更多
Using numerical simulations, the nonlinear transmission performance of polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) coherent systems is studied. It is found that inter-channel cross-pol...Using numerical simulations, the nonlinear transmission performance of polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) coherent systems is studied. It is found that inter-channel cross-polarization modulation (XPolM) induced nonlinear polarization scattering can significantly degrade the transmission performance of PDM-QPSK coherent systems and change the perspective of dispersion management in optical coherent transmission systems. Some techniques to mitigate nonlinear polarization scattering in dispersion-managed PDM coherent transmission systems are discussed, including the use of time-interleaved return-to-zero (RZ) PDM formats, the use of periodic-group-delay PGD dispersion compensators, and the judicious addition of some polarization-mode-dispersion (PMD) in the transmission link. It is shown that if nonlinear polarization scattering can be well mitigated, a polarization multiplexed optical coherent transmission system with dispersion management could perform better than that without it.展开更多
文摘Contrary to the other multi-carrier modulation systems, the coherent optical orthogonal frequency division multiplexing communication system with an offset quadrature amplitude modulation (CO-OFDM-OQAM) possesses inherent imaginary interference (IMI). This has an important impact on the channel estimation process. Currently, a variety of frequency-domain channel estimation methods have been proposed. However, there are various problems that still exist. For instance, in order to reduce the influence of IMI, it is necessary to insert more guard intervals between the training sequence and the payload, leading to the occupation of excessive spectrum resources. In order to address this problem, this work designs a high spectral efficient frequency-domain channel estimation method for the polarization-division-multiplexing CO-OFDM-OQAM systems. First, the working principle of the proposed method is described in detail. Then, its spectral efficiency, power peak-to-average ratio, and channel estimation performance are studied based on simulations. The simulation results show that the proposed method improves the spectral efficiency without worsening the power peak-to-average ratio. The channel estimation capability of this method is verified in three scenarios of long-distance transmissions, including back-to-back, 100 km, and 200 km transmissions. .
文摘Using numerical simulations, the nonlinear transmission performance of polarization-division-multiplexed quadrature-phase-shift-keying (PDM-QPSK) coherent systems is studied. It is found that inter-channel cross-polarization modulation (XPolM) induced nonlinear polarization scattering can significantly degrade the transmission performance of PDM-QPSK coherent systems and change the perspective of dispersion management in optical coherent transmission systems. Some techniques to mitigate nonlinear polarization scattering in dispersion-managed PDM coherent transmission systems are discussed, including the use of time-interleaved return-to-zero (RZ) PDM formats, the use of periodic-group-delay PGD dispersion compensators, and the judicious addition of some polarization-mode-dispersion (PMD) in the transmission link. It is shown that if nonlinear polarization scattering can be well mitigated, a polarization multiplexed optical coherent transmission system with dispersion management could perform better than that without it.