期刊文献+
共找到6,422篇文章
< 1 2 250 >
每页显示 20 50 100
Wavelength-interval switchable Brillouin–Raman random fiber laser through Brillouin pump manipulation
1
作者 李阳 徐恩明 +2 位作者 陈睿佳 Yu-Gang Shee 张祖兴 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期374-379,共6页
A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity ... A wavelength-interval switchable Brillouin–Raman random fiber laser(BRRFL) based on Brillouin pump(BP) manipulation is proposed in this paper. The proposed wavelength-interval switchable BRRFL has a full-open cavity configuration, featuring multiwavelength output with wavelength interval of double Brillouin frequency shifts. Through simultaneously injecting the BP light and its first-order stimulated Brillouin-scattered light into the cavity, the laser output exhibits a wavelength interval of single Brillouin frequency shift. The wavelength-interval switching effect can be manipulated by controlling the power of the first-order stimulated Brillouin scattering light. The experimental results show the multiwavelength output can be switched between double Brillouin frequency shift multiwavelength emission with a broad bandwidth of approximately 60 nm and single Brillouin frequency shift multiwavelength emission of 44 nm. The flexible optically controlled random fiber laser with switchable wavelength interval makes it useful for a wide range of applications and holds significant potential in the field of wavelength-division multiplexing optical communication. 展开更多
关键词 wavelength-interval switchable fiber laser Brillouin fiber laser stimulated Brillouin-scattered random fiber laser
下载PDF
On the generation of high-quality Nyquist pulses in mode-locked fiber lasers
2
作者 任俞宣 葛锦蔓 +2 位作者 李小军 彭俊松 曾和平 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期424-427,共4页
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r... Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers. 展开更多
关键词 mode locking laser SOLITON fiber PULSE
下载PDF
Internal phase control of fiber laser array based on photodetector array
3
作者 靳凯凯 龙金虎 +5 位作者 常洪祥 粟荣涛 张嘉怡 陈思雨 马阎星 周朴 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第7期320-326,共7页
Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback ... Coherent beam combining(CBC) of fiber laser array is a promising technique to realize high output power while maintaining near diffraction-limited beam quality. To implement CBC, an appropriate phase control feedback structure should be established to realize phase-locking. In this paper, an innovative internal active phase control CBC fiber laser array based on photodetector array is proposed. The dynamic phase noises of the laser amplifiers are compensated before being emitted into free space. And the static phase difference compensation of emitting laser array is realized by interference measurement based on photodetector array. The principle of the technique is illustrated and corresponding simulations are carried out, and a CBC system with four laser channels is built to verify the technique. When the phase controllers are turned on, the phase deviation of the laser array is less than λ/20, and ~ 95% fringe contrast of the irradiation distribution is obtained. The technique proposed in this paper could provide a reference for the system design of a massive high-power CBC system. 展开更多
关键词 fiber laser laser array coherent beam combining internal phase control
下载PDF
Numerical design of an efficient Ho^(3+)-doped InF3 fiber laser at~3.2μm
4
作者 Shi-Yuan Zhou Hong-Yu Luo +1 位作者 Ya-Zhou Wang Yong Liu 《Journal of Electronic Science and Technology》 EI CAS CSCD 2024年第3期35-46,共12页
In this work,we theoretically unlock the potential of Ho^(3+)-doped InF3 fiber for efficient~3.2μm laser generation(from the ^(5)F_(4),^(5)S_(2)→^(5)F_(5) transition),by employing a novel dual-wavelength pumping sch... In this work,we theoretically unlock the potential of Ho^(3+)-doped InF3 fiber for efficient~3.2μm laser generation(from the ^(5)F_(4),^(5)S_(2)→^(5)F_(5) transition),by employing a novel dual-wavelength pumping scheme at 1150 nm and 980 nm,for the first time.Under clad-coupled 1150 nm pumping of 5 W,~3.2μm power of 3.6 W has been predicted with the optical-to-optical efficiency of 14.4%.Further efficient power scaling,however,is blocked by the output saturation with 980 nm pumping.To alleviate this behavior,the cascaded ^(5)I_(5)→^(5)I_(6) transition,targeting~3.9μm,has been activated simultaneously,therefore accelerating the population circulation between the laser upper level ^(5)F_(4),^(5)S_(2) and long-lived ^(5)I_(6) level under 980 nm pumping.As a result,enhanced~3.2μm power of 4.68 W has been obtained with optical-to-optical efficiency of 15.6%.Meanwhile the~3.9μm laser,yielding power of 2.76 W with optical-to-optical efficiency of 9.2%,is theoretically achievable as well with a moderate heat load,of which the performance is even better than the prior experimentally and theoretically reported Ho^(3+)-doped InF3 fiber lasers emitting at~3.9μm alone.This work demonstrates a versatile platform for laser generation at~3.2μm and~3.9μm,thus providing the new opportunities for many potential applications,e.g.,polymer processing,infrared countermeasures,and free-space communications. 展开更多
关键词 Cascaded fiber laser HOLMIUM MID-INFRARED
下载PDF
Broadband bidirectional Brillouin–Raman random fiber laser with ultra-narrow linewidth
5
作者 杨茜 李阳 +3 位作者 邹辉 梅杰 徐恩明 张祖兴 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第2期371-376,共6页
We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a reg... We present a Brillouin–Raman random fiber laser(BRRFL)with full-open linear cavity structure to generate broadband Brillouin frequency comb(BFC)with double Brillouin-frequency-shift spacing.The incorporation of a regeneration portion consisting of an erbium-doped fiber and a single-mode fiber enables the generation of broadband BFC.The dynamics of broadband BFC generation changing with the pump power(EDF and Raman)and Brillouin pump(BP)wavelength are investigated in detail,respectively.Under suitable conditions,the bidirectional BRRFL proposed can produce a flatamplitude BFC with 40.7-nm bandwidth ranging from 1531 nm to 1571.7 nm,and built-in 242-order Brillouin Stokes lines(BSLs)with double Brillouin-frequency-shift spacing.Moreover,the linewidth of single BSL is experimentally measured to be about 2.5 kHz.The broadband bidirectional narrow-linewidth BRRFL has great potential applications in optical communication,optical sensing,spectral measurement,and so on. 展开更多
关键词 random laser fiber laser stimulated Brillouin scattering(SBS) stimulated Raman scattering(SRS)
下载PDF
Widely-wavelength-tunable brillouin fiber laser with improved optical signal-to-noise ratio based on parity-time symmetric and saturable absorption effect
6
作者 LIU Yi JIANG Kai +5 位作者 FANG Xin-yue YOU Ya-jun HE Wen-jun HOU Jia-xin HAN Xue-feng CHOU Xiu-jian 《中国光学(中英文)》 EI CAS CSCD 北大核心 2024年第5期1244-1253,共10页
A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetr... A widely-wavelength-tunable Brillouin fiber laser(BFL)with improved optical signal-to-noise ratio(OSNR)based on parity-time(PT)symmetric and saturable absorption(SA)effect is present.This novel BFL realizes PT symmetry and SA effect through polarization-maintaining erbium-doped fiber(PM-EDF)Sagnac loop,which is composed of a PM-EDF,a coupler and two polarization controllers(PCs).By using the inherent birefringence characteristic of PM-EDF,two feedback loops in orthogonal polarization state are formed when the Strokes signal in injected.One of these loops provides gain in the clockwise direction with in the Sagnac loop,while the other loop generates loss in the counterclockwise direction.By adjusting the PCs to control the polarization state of the PM-EDF,a single-longitudinal-mode(SLM)BFL can be achieved,as the PT symmetry is broken when the SA participating stimulated Brillouin scattering(SBS)gain and loss are well-matched and the gain surpasses the coupling coefficient.Compared to previous BFLs,the proposed BFL has a more streamlined structure and a wider wavelength tunable range,at the same time,it is not being limited by the bandwidth of the erbium-doped fiber amplifier while still maintaining narrow linewidth SLM output.Additionally,thanks to SA effect of the PM-EDF,the PT symmetric SBS gain contract is enhanced,resulting in a higher optical signal-to-noise(OSNR).The experimental results show that the laser has a wide tunable range of 1526.088 nm to 1565.498 nm,an improved OSNR of 77 dB,and a fine linewidth as small as 140.5 Hz. 展开更多
关键词 Brillouin fiber laser widely-wavelength-tunable parity-time symmetric high OSNR narrow linewidth
下载PDF
Imaging through scattering layers using a near-infrared low-spatial-coherence fiber random laser
7
作者 Anda Shi Zeyu Wang +2 位作者 Chenxi Duan Zhao Wang Weili Zhang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第10期226-232,共7页
Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficienc... Optical memory effect-based speckle-correlated technology has been developed for reconstructing hidden objectsfrom disordered speckle patterns,achieving imaging through scattering layers.However,the lighting efficiency and fieldof view of existing speckle-correlated imaging systems are limited.Here,a near-infrared low spatial coherence fiberrandom laser illumination method is proposed to address the above limitations.Through the utilization of random Rayleighscattering within dispersion-shifted fibers to provide feedback,coupled with stimulated Raman scattering for amplification,a near-infrared fiber random laser exhibiting a high spectral density and extremely low spatial coherence is generated.Based on the designed fiber random laser,speckle-correlated imaging through scattering layers is achieved,with highlighting efficiency and a large imaging field of view.This work improves the performance of speckle-correlated imagingand enriches the research on imaging through scattering medium. 展开更多
关键词 fiber random laser speckle-correlated imaging scattering medium spatial coherence
下载PDF
An all-polarization-maintaining repetition-tunable erbium-doped passively mode-locked fiber laser 被引量:1
8
作者 赵光贞 肖晓晟 +2 位作者 孟飞 梅佳伟 杨昌喜 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第10期299-304,共6页
An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a del... An environmentally stable, repetition rate tunable, all-polarization-maintaining, Er-doped pulse fiber laser with a single-wall carbon nanotubes saturated absorber is demonstrated. The ring laser cavity includes a delay line enabling a tunable repetition rate to vary from 35.52 MHz to 35.64 MHz with continuous mode-locked operation. The laser output parameters confirm that the tunable mode-locked operations are stable. High environmental stability is also confirmed by the -130 dBc/Hz low phase noise, a 70-dB signal-to-noise ratio of radio frequency signals, a low amplitude fluctuation of 5.76 × 10-4, and a low fluctuation of reoetition rate of 12 Hz. The laser shows a high de^ree of oolarization of 93%. 展开更多
关键词 fiber laser MODULATION tuning and mode locking NANOTUBES
下载PDF
Low-repetition-rate, all-polarization-maintaining Yb-doped fiber laser mode-locked by a semiconductor saturable absorber 被引量:2
9
作者 肖晓晟 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期216-220,共5页
A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standar... A low-repetition-rate, all-polarization-maintaining(PM)-fiber sub-nanosecond oscillator is presented, which is simple and low-cost, composed of standard components. The ring cavity is elongated by 114-m-long standard PM fiber, and passively mode-locked by a fiber pigtailed semiconductor saturable absorber. Linearly polarized pulses with 1.66 MHz repetition rate and 22 dB polarization extinction ratio are generated at a wavelength of 1030 nm, which is determined by an intracavity filter. In addition, to demonstrate that the oscillator is a good seed for high energy pulse generation, an all-fiber master oscillator power amplifier is built and amplified pulses with energy about 2 μJ are obtained. 展开更多
关键词 mode-locked fiber laser polarization maintaining master oscillator power amplifier
下载PDF
Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser 被引量:1
10
作者 Jun-Kai Shi Deng-Feng Dong +5 位作者 Ying-Ling Pan Guan-Nan Li Yao Li Li-Tuo Liu Xiao-Mei Chen Wei-Hu Zhou 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第1期262-266,共5页
We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase... We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively. 展开更多
关键词 figure-9 mode-locked fiber laser nonlinear amplifying loop mirror suppression of multi-pulse formation
下载PDF
Linearly Polarized Polarization-Maintaining Er^(3+)-Doped Fluoride Fiber Laser in the Mid-Infrared
11
作者 Hong-Yu Luo Yong-Zhi Wang 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第1期1-8,共8页
We demonstrated the~2.8-μm and~3.5-μm linearly polarized continuous wave(CW)laser outputs from a polarization-maintaining(PM)Er^(3+)-doped fluoride fiber laser.By introducing a film polarizer into the cavity to sele... We demonstrated the~2.8-μm and~3.5-μm linearly polarized continuous wave(CW)laser outputs from a polarization-maintaining(PM)Er^(3+)-doped fluoride fiber laser.By introducing a film polarizer into the cavity to select the laser polarization orientation,the~2.8-μm linearly polarized CW laser with a high polarization extinction ratio(PER)of~23 dB and maximum output power of 2.37 W was achieved under double-end pumping at 976 nm.By adding another 1981-nm pump source simultaneously,the~3.5-μm linearly polarized CW laser was also obtained,giving higher PER of~27 dB and maximum output power of 307 mW which is only limited by the available power of 1981-nm pump.To the best of our knowledge,this is the first report on a mid-infrared linearly polarized CW PM fiber laser in the>2.5-μm mid-infrared region.This work not only opens up opportunities for some new mid-infrared applications,but also provides a promising platform for developing high-stability and versatile mid-infrared laser sources. 展开更多
关键词 fiber laser linearly polarized MID-INFRARED polarization-maintaining(PM)
下载PDF
Wideband All-Polarization-Maintaining Yb-Doped Mode-Locked Fiber Laser Using a Nonlinear Optical Loop Mirror
12
作者 林一楠 方文坛 +1 位作者 顾春 许立新 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第5期43-45,共3页
We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 2... We report on a wide-band and stable mode-locked all-polarization-maintaining fiber laser configuration using a nonlinear optical loop mirror. The central wavelength of the laser is 1080.14nm and the 3dB bandwidth is 20.29nm. The repetition rate of the pulse is 3.28 MHz and the pulse width is 848ps. By tuning the pump power, which is centered at 980nrn, from 300mW to 380mW, we obtain a linearly changed output power from 6row to 7.12roW. The all-polarization-mMntaining fiber configuration is fundamental to the stability of the output power. 展开更多
关键词 YB in on mode of Wideband All-polarization-maintaining Yb-Doped Mode-Locked fiber laser Using a Nonlinear Optical Loop Mirror
下载PDF
Corrigendum to:“Spectrum-tailored random fiber laser towards ICF laser facility”[Matter and Radiation at Extremes 8,025902(2023)] 被引量:2
13
作者 Mengqiu Fan Shengtao Lin +14 位作者 Ke Yao Yifei Qi Jiaojiao Zhang Junwen Zheng Pan Wang Longqun Ni Xingyu Bao Dandan Zhou Bo Zhang Kaibo Xiao Handing Xia Rui Zhang Ping Li Wanguo Zheng Zinan Wang 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2023年第2期79-79,共1页
The third paragraph in Sec.IV REGENERATIVE AMPLIFICATION erroneously states“In other words,the distribution of spectral components is time-dependent,and the spectral distortion in the amplification process will not c... The third paragraph in Sec.IV REGENERATIVE AMPLIFICATION erroneously states“In other words,the distribution of spectral components is time-dependent,and the spectral distortion in the amplification process will not change the time-domain shape.” 展开更多
关键词 fiber laser EXTREME
下载PDF
Comprehensive analysis of pure-quartic soliton dynamics in a passively mode-locked fiber laser 被引量:1
14
作者 刘列 韩颖 +3 位作者 霍佳雨 文红琳 吴戈 高博 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期477-483,共7页
The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the in... The understanding of soliton dynamics promotes the development of ultrafast laser technology. High-energy purequartic solitons(PQSs) have gradually become a hotspot in recent years. Herein, we numerically study the influence of the gain bandwidth, saturation power, small-signal gain, and output coupler on PQS dynamics in passively mode-locked fiber lasers. The results show that the above four parameters can affect PQS dynamics. Pulsating PQSs occur as we alter the other three parameters when the gain bandwidth is 50 nm. Meanwhile, PQSs evolve from pulsating to erupting and then to splitting as the other three parameters are altered when the gain bandwidth is 10 nm, which can be attributed to the existence of the spectral filtering effect and intra-cavity fourth-order dispersion. These findings provide new insights into PQS dynamics in passively mode-locked fiber lasers. 展开更多
关键词 pure-quartic soliton pulsating soliton erupting soliton passively mode-locked fiber lasers
下载PDF
Research on Infrared Emissivity and Laser Reflectivity of Sn_(1−x)Er_(x)O_(2)Micro/Nanofibers Based on First-Principles 被引量:1
15
作者 Yuanjia Xia Fang Zhao +2 位作者 Zhizun Li Zhaogang Cheng Jianwei Hu 《Journal of Renewable Materials》 SCIE EI 2023年第2期921-936,共16页
Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target produc... Sn_(1−x)Er_(x)O_(2)(x=0%,8%,16%,24%)micro/nanofibers were prepared by electrospinning combined with heat treatment using erbium nitrate,stannous chloride and polyvinylpyrrolidone(PVP)as raw materials.The target products were characterized by thermogravimetric analyzer,X-ray diffrotometer,fourier transform infrared spectrometer,scanning electron microscope,spectrophotometer and infrared emissivity tester,and the effects of Er^(3+)doping on its infrared and laser emissivity were studied.At the same time,the Sn_(1−x)Er_(x)O_(2)(x=0%,16%)doping models were constructed based on the first principles of density functional theory,and the related optoelectronic properties such as their energy band structure,density of states,reflectivity and dielectric constant were analyzed,and further explained the mechanism of Er^(3+)doping on SnO_(2)infrared emissivity and laser absorption from the point of electronic structure.The results showed that after calcination at 600℃,single rutile type SnO_(2)was formed,and the crystal structure was not changed by doping Er^(3+).The calcined products showed good fiber morphology,and the average fiber diameter was 402 nm.The infrared emissivity and resistivity of the samples both decreased first and then increased with the increase of Er^(3+)doping amount.When x=16%,the infrared emis-sivity of the sample was at least 0.71;and Er^(3+)doping can effectively reduce the reflectivity of SnO_(2)at 1.06μm and 1.55μm,when x=16%,its reflectivity at 1.06μm and 1.55μm are 50.5%and 40%,respectively,when x=24%,the reflectivity at 1.06μm and 1.55μm wavelengths are 47.3%and 42.1%,respectively.At the same time,the change of carrier concentration and electron transition before and after Er^(3+)doping were described by first-principle calculation,and the regulation mechanism of infrared emissivity and laser reflectivity was explained.This study provides a certain experimental and theoretical basis for the development of a single-type,light-weight and easily prepared infrared and laser compatible-stealth material. 展开更多
关键词 Micro/nano fibers Er^(3+)doping SnO_(2) laser and infrared compatible stealth material
下载PDF
A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
16
作者 周哲海 吴婧仪 +2 位作者 闵昆龙 赵爽 李慧宇 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期252-257,共6页
A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polari... A multiwavelength tunable ring-cavity erbium-doped fiber laser(EDFL)based on a Lyot filter was presented.For the proposed Lyot filter,a comb filter consisting of an EDF-polarization-maintaining fiber(EDF-PMF),a polarization controller(PC),and a circulator with four ports was used to suppress the mode competition.The light transmission direction was guaranteed by the circulator.For the proposed fiber laser,tunable single,dual,triple,quadruple,quintuple,sextuple,and septuple wavelengths were realized.A single-wavelength laser output with an optical signal-to-noise ratio(SNR)of up to30.56 dB was realized,and a tuning range of 1590.54 nm to 1599.54 nm was achieved by tuning the PC.The stability of the single,dual,triple,and quadruple-wavelength center power fluctuations was less than 0.05 dB,0.98 dB,5.07 dB,and7.71 dB respectively.When the laser was operated in the multiwavelength condition,the SNR was more than 20.97 dB.The proposed erbium-doped fiber laser is suitable for fiber-sensing system applications. 展开更多
关键词 multiwavelength erbium-doped fiber laser Lyot filter polarization-maintaining fiber CIRCULATOR
下载PDF
Single-frequency linearly polarized Q-switched fiber laser based on Nb_(2)GeTe_(4)saturable absorber
17
作者 陈思雨 邓海芹 +8 位作者 张万儒 戴永平 王涛 俞强 李灿 姜曼 粟荣涛 吴坚 周朴 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第7期382-386,共5页
We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber to... We report a single-frequency linearly polarized Q-switched fiber laser based on an Nb_(2)GeTe_(4)saturable absorber(SA).The Nb_(2)GeTe_(4)SA triggers passive Q-switching of the laser,and an un-pumped Yb-doped fiber together with a 0.08-nmbandwidth polarization-maintaining fiber Bragg grating(FBG)acts as an ultra-narrow bandwidth filter to realize singlelongitudinal-mode(SLM)oscillation.The devices used in the laser are all kept polarized,so as to ensure linearly polarized laser output.Stable SLM linearly polarized Q-switching operation at 1064.6 nm is successfully achieved,producing a laser with a shortest pulse width of 1.36μs,a linewidth of 28.4 MHz,a repetition rate of 28.3 kHz-95.9 kHz,and a polarization extinction ratio of about 30 dB.It is believed that the single-frequency linearly polarized pulsed fiber laser studied in this paper has great application value in gravitational wave detection,beam combining,nonlinear frequency conversion,and other fields. 展开更多
关键词 fiber laser saturable absorber SINGLE-LONGITUDINAL-MODE pulsed laser
下载PDF
Thulium fiber laser lithotripsy:Is it living up to the hype?
18
作者 John Denstedt Fernanda C.Gabrigna Berto 《Asian Journal of Urology》 CSCD 2023年第3期289-297,共9页
Objective:The holmium:yttrium-aluminium-garnet laser(Ho:YAG)has been the gold standard for laser lithotripsy over the last three decades.After demonstrating good in vitro efficacy,the thulium fiber laser(TFL)has been ... Objective:The holmium:yttrium-aluminium-garnet laser(Ho:YAG)has been the gold standard for laser lithotripsy over the last three decades.After demonstrating good in vitro efficacy,the thulium fiber laser(TFL)has been recently released in the market and the initial clinical results are encouraging.This article aims to review the main technology differences between the Ho:YAG laser and the TFL,discuss the initial clinical results with the TFL as well as the optimal settings for TFL lithotripsy.Methods:We reviewed the literature focusing on the technological aspects of the Ho:YAG laser and TFL as well as the results of in vitro and in vivo studies comparing both technologies.Results:In vitro studies show a technical superiority of TFL compared to the Ho:YAG laser and encouraging results have been demonstrated in clinical practice.However,as TFL is a new technology,limited studies are currently available,and the optimal settings for lithotripsy are not yet established.Conclusion:TFL has the potential to be an alternative to the Ho:YAG laser,but more reports are still needed to determine the optimal laser for lithotripsy of urinary tract stones when considering all parameters including effectiveness,safety,and costs. 展开更多
关键词 UROLITHIASIS Thulium fiber laser Holmium:yttriumaluminium-garnet laser laser lithotripsy
下载PDF
Real-time observation of soliton pulsation in net normal-dispersion dissipative soliton fiber laser
19
作者 汪徐德 耿旭 +4 位作者 潘婕妤 孙梦秋 陆梦想 李凯芯 李素文 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期316-322,共7页
We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pul... We present experimental observations of soliton pulsations in the net normal-dispersion fiber laser by using the dispersive Fourier transform(DFT) technique. According to the pulsating characteristics, the soliton pulsations are classified as visible and invisible soliton pulsations. The visible soliton pulsation is converted from single-into dual-soliton pulsation with the common characteristics of energy oscillation and bandwidth breathing. The invisible soliton pulsation undergoes periodic variation in the spectral profile and peak power but remains invariable in pulse energy. The reason for invisible soliton pulsation behavior is periodic oscillation of the pulse inside the soliton molecule. These results could be helpful in deepening our understanding of the soliton pulsation phenomena. 展开更多
关键词 fiber laser soliton pulsation soliton molecule dispersive Fourier transformation
下载PDF
Antimonene-based saturable absorber for a soliton mode-locked and Q-switched fiber laser in the 2 μm wavelength region
20
作者 H Ahmad B Nizamani +2 位作者 M Z Samion N Yusoff M F Ismail 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期259-269,共11页
We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a t... We demonstrate antimonene as a saturable absorber(SA) to generate an ultrafast mode-locked and Q-switched laser in the 2 μm wavelength region. The two antimonene-based SAs were prepared and inserted separately in a thulium–holmiumdoped fiber laser to produce the pulsed laser. Antimonene was coated onto a tapered fiber to generate soliton mode-locked pulses and used in thin-film form for the generation of Q-switched pulses. The mode-locking was stable within a pump power of 267 m W–511 m W, and the laser operated at a central wavelength of 1897.4 nm. The mode-locked laser had a pulse width of 1.3 ps and a repetition rate of 12.6 MHz, with a signal-to-noise ratio of 64 d B. Q-switched laser operation was stable at a wavelength of 1890.1 nm within a pump power of 312 m W–381 m W. With the increase in pump power from 312 m W to 381 m W, the repetition rate increased to a maximum of 56.63 k Hz and the pulse width decreased to a minimum value of 2.85 μs. Wide-range tunability of the Q-switched laser was also realized within the wavelength range of1882 nm–1936 nm. 展开更多
关键词 MODE-LOCKING Q-switched fiber laser optical saturable absorber
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部