This article presents a technical review of circularly polarized(CP) dielectric resonator antennas(DRA) for wideband applications.The primary objective of this review is,to highlight the techniques used by different r...This article presents a technical review of circularly polarized(CP) dielectric resonator antennas(DRA) for wideband applications.The primary objective of this review is,to highlight the techniques used by different researchers for generating circular polarization in DRA.First,a general idea of circular polarization and it advantages over linear polarization is presented,and then all the major developments made in the CP DRA are highlighted.The emphasis of the paper is on the wideband circularly polarized dielectric resonator antenna.The current state of the art and all the realizable features of the CP DRA are addressed comprehensively.Finally,some recommendations for future CP DRAs are given and the paper ends with concluding remarks.展开更多
In this paper,a new compact ultrawideband(UWB)circularly polarized(CP)antenna array for vehicular communications is proposed.The antenna array consists of a 2×2 sequentially rotated T-shaped cross dipole,four par...In this paper,a new compact ultrawideband(UWB)circularly polarized(CP)antenna array for vehicular communications is proposed.The antenna array consists of a 2×2 sequentially rotated T-shaped cross dipole,four parasitic elements,and a feeding network.By loading the T-shaped cross dipoles with parasitic rectangular elements with cut corners,the bandwidth can be expanded.On this basis,the radiation pattern can be improved by the topology with sequential rotation of four T-shaped cross-dipole antennas,and the axial ratio(AR)bandwidth of the antenna also can be further enhanced.In addition,due to the special topology that the vertical arms of all Tshaped cross dipoles are all oriented toward the center of the antenna array,the gain of proposed antenna is improved while the size of the antenna is almost the same as the traditional cross dipole.Simulated and measured results show that the proposed antenna has good CP characteristics,an impedance bandwidth for S11<-10 d B of about 106.1%(3.26:1,1.57-5.12 GHz)and the 3-d B AR bandwidth of about 104.1%(3.17:1,1.57-4.98 GHz),a wide 3-d B gain bandwidth of 73.3%as well as the peak gain of 8.6 d Bic at 3.5 GHz.The overall size of antenna is 0.56λ×0.56λ×0.12λ(λrefers to the wavelength of the lowest operating frequency in free space).The good performance of this compact UWB CP antenna array is promising for applications in vehicular communications.展开更多
As an important part of phased array system,the research on phased array antenna is very necessary.The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array e...As an important part of phased array system,the research on phased array antenna is very necessary.The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array element.In this paper,a dual K-band circularly polarized antenna with high broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency is designed.We combine with the advantages of slot antenna and aperture antenna,use multimode waveguide cavity structure to design an aperture antenna,which is fed to waveguide circular polarizer by slot coupling in order to realize circular polarization radiation.Meanwhile,it has the characteristics of broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency.A slit antenna is designed by using a multimode waveguide cavity structure and a slit coupling feed to a waveguide circular polarizer is used to achieve circularly polarized radiation.The designed antenna consists of two K-band circularly polarized antenna units,and the spacing between the two units is 9.5 mm,which is fed by aK-band T/R module(Transmitter/Receiver module).In order to study the performance of the pattern in the case of the research group,the 2-unit structure is established.The simulation results of frequency–axial ratio bandwidth are given,and the simulation result of the antenna array is shown.The practical results of antenna design and test are also given.展开更多
Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two ...Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two types of circular polarization in satellite communications,they are used to support uplink and downlink communications.Circularly polarized antennas are used also in radar system for target detection,tracking and identification.The“three-element circularly polarized microstrip array antenna”is designed to produce left-handed circular polarization,make its size compact,make its bandwidth wider than 3.7-4.2GHz and achieve high gain.Circular polarization element antenna and three-element circularly polarized microstrip array antenna are designed and simulated in software HFSS,and the circular polarization element antenna is manufactured and tested in anechoic chamber.For circular polarization element antenna and three-element circularly polarized microstrip array antenna,the study analyzed these parameters:AR,S(1,1),VSWR,bandwidth,normalized impedance,gain and realized gain,radiation efficiency.After optimized,the study get the required results of them.展开更多
A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmiss...A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmission phase and also the high transmission amplitude,the GPGM is capable of manipulating an electromagnetic wave arbitrarily.A focusing transmission lens working at Ku band is well optimized with the F /D of 0.32.A good focusing effect is demonstrated clearly by theoretical calculation and electromagnetic simulation.For further application,an ultra-thin single-layer transmissive lens antenna based on the proposed focusing metasurface operating at 13 GHz is implemented and launched by an original patch antenna from the perspective of high integration,simple structure,and low cost.Numerical and experimental results coincide well,indicating the advantages of the antenna system,such as a high gain of 17.6 d B,the axis ratio better than 2 d B,a high aperture efficiency of 41%,and also a simple fabrication process based on the convenient print circuit board technology.The good performance of the proposed antenna indicates promising applications in portable communication systems.展开更多
An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-ort...An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-orthogonal polarized antennas (DPAs). In most current studies, the channel characteristic matrix (CCM) is always formed by an independent identical distribution (i.i.d) model of Rayleigh or Rice distribution and nevertheless incomplete and inaccurate to describe a broadband dual-orthogonal polarized MIMO land mobile satellite (BDM-LMS) channel. This paper fo- cuses on establishing the BDM-LMS channel statistical model, which combines the 4-state broadband LMS channel model, the time selective fading features, the channel covariance information (CCI) channel model and polarization correlations between an- tennas. The modeling steps of the channel model are introduced. The main emphasis is placed on the effects of the factors, such as antenna numbers, temporal correlations, terminal environments, elevation angles and polarization correlations between the DPAs, on the channel capacity in the BDM-LMS system. Many simulation results are provided to illustrate the effects of these factors through comparisons of the transmit rate, ergodic capacity and outage capacity with different factor values. Besides, the MIMO outage capacity advantages, which indicate the benefits of MIMO com- pared with a single input single output (SISO) system under the same channel condition, are also studied under i.i.d or BDM-LMS channel.展开更多
The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be contro...The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be controlled simultaneously if the forms of module arrangement are chosen properly and the amplitudes and the phases of array excitation are determined by the method presented in this article. Moreover, the calculations of the amplitudes and the phases of array excitation are simplified greatly while using the bounded conditions properly, and the desired beam sweep rate is achieved.展开更多
Six circularly polarized patch antennas with electromagnetic band gap(EBG)arranged at different locations were studied.These EBG antennas were compared in terms of impedance bandwidth,axial ratio(AR)bandwidth and ...Six circularly polarized patch antennas with electromagnetic band gap(EBG)arranged at different locations were studied.These EBG antennas were compared in terms of impedance bandwidth,axial ratio(AR)bandwidth and radiation patterns.When the EBG cells were placed closer to the edge of the substrate,the EBG antenna had a larger front radiation and a narrower bandwidth.Integrating the EBG cells closer to the center of the patch resulted in a wider impedance bandwidth,a wider axial ratio bandwidth and a decreased front gain.展开更多
The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path i...The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.展开更多
In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and t...In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and the gap between adjacent patches, the BSP can effectively enhance capacitive coupling and simultaneously suppress diamagnetic response, which significantly increases the refractive index of the proposed metamaterial. Furthermore, the high refractive index region is far away from the resonant region of the metamaterial, resulting in broadband. Based on these characteristics of BSP, a gradient refractive index (GRIN) lens with thin thickness (0.34/~0, where 2~0 is the wavelength at 5.75 GHz) is designed. By using this lens, we then design a circularly polarized horn antenna with high performance. The measurement results show that the 3-dB axial ratio bandwidth is 34.8% (4.75 GHz-6.75 GHz) and the antenna gain in this frequency range is increased by an average value of 3.4 dB. The proposed method opens up a new avenue to design high-performance antenna.展开更多
Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred p...Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other.展开更多
A polarized reconfigurable patch antenna is proposed in this paper.The proposed antenna is a dual cross-polarized patch antenna with a programmable power divider.The programmable power divider consists of two branch l...A polarized reconfigurable patch antenna is proposed in this paper.The proposed antenna is a dual cross-polarized patch antenna with a programmable power divider.The programmable power divider consists of two branch line couplers(BLC)and a digital phase shifter.By adjusting the phase of the phase shifter,the power ratio of the power divider can be changed,and thus the feed power to the antenna input port can be changed to reconfigure the antenna polarization.The phase-controlled power divider and the cross dual-polarized antenna are designed,fabricated and tested,and then they are combined to realize the polarized reconfigurable antenna.By moving the phase of the phase shifter,the antenna polarization is reconfigured into vertical polarization(VP),horizontal polarization(HP),and circular polarization(CP).The test is conducted at the frequency of 915 MHz,which is widely used for simultaneous wireless information and power transfer(SWIPT)in radio-frequency identification(RFID)applications.The results demonstrate that when the antenna is configured as CP,the axial ratio of the antenna is less than 3 dB,and when the antenna is configured as HP or VP,the axial ratio of the antenna exceeds 20 dB.Finally,experiments are conducted to verify the influence of antenna polarization changes on wireless power transmitting.As expected,the reconfigured antenna polarization can help improve the power transmitting efficiency.展开更多
Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometr...Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.展开更多
This paper presents an overview of the recent advances in reconfigurable antennas for wireless communications at University of Technology Sydney.In particular,it reports our latest progress in this research field,incl...This paper presents an overview of the recent advances in reconfigurable antennas for wireless communications at University of Technology Sydney.In particular,it reports our latest progress in this research field,including a multi-linear polarization reconfigurable antenna,a pattern reconfigurable antenna with multiple switchable beams,and a combined pattern and polarization reconfigurable antenna.展开更多
This article proposes a new kind of microstrip reflectarray antenna,of which the polarization could be reconfigured among all the polarization states instead of some fixed states in a dual-or multi-polarized antenna.T...This article proposes a new kind of microstrip reflectarray antenna,of which the polarization could be reconfigured among all the polarization states instead of some fixed states in a dual-or multi-polarized antenna.The mechanism for polarized variability is so simple that only mechanical rotation is needed.Theoretical analysis shows that the reflected polarization covers all states and that the dual-or multi-layered unit structure sandwiched with air-gaps can broaden the bandwidth efficiently.Moreover,it is demonstrated that adopting more elements can enhance antenna gain.With these advantageous features,this kind of antenna has the potential significance for engineering applications in radar,communication,etc.In this article,a complete theoretical analysis as well as a specific design sample is given to verify this method.展开更多
基金Global Fellowship Scheme of Universiti Sains Malaysia,research grant number USM RUT 1001/PELECT/854004
文摘This article presents a technical review of circularly polarized(CP) dielectric resonator antennas(DRA) for wideband applications.The primary objective of this review is,to highlight the techniques used by different researchers for generating circular polarization in DRA.First,a general idea of circular polarization and it advantages over linear polarization is presented,and then all the major developments made in the CP DRA are highlighted.The emphasis of the paper is on the wideband circularly polarized dielectric resonator antenna.The current state of the art and all the realizable features of the CP DRA are addressed comprehensively.Finally,some recommendations for future CP DRAs are given and the paper ends with concluding remarks.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant No.62071306in part by Shenzhen Science and Technology Program under Grants JCYJ202001091-13601723,JSGG20210802154203011 and JSGG-20210420091805014。
文摘In this paper,a new compact ultrawideband(UWB)circularly polarized(CP)antenna array for vehicular communications is proposed.The antenna array consists of a 2×2 sequentially rotated T-shaped cross dipole,four parasitic elements,and a feeding network.By loading the T-shaped cross dipoles with parasitic rectangular elements with cut corners,the bandwidth can be expanded.On this basis,the radiation pattern can be improved by the topology with sequential rotation of four T-shaped cross-dipole antennas,and the axial ratio(AR)bandwidth of the antenna also can be further enhanced.In addition,due to the special topology that the vertical arms of all Tshaped cross dipoles are all oriented toward the center of the antenna array,the gain of proposed antenna is improved while the size of the antenna is almost the same as the traditional cross dipole.Simulated and measured results show that the proposed antenna has good CP characteristics,an impedance bandwidth for S11<-10 d B of about 106.1%(3.26:1,1.57-5.12 GHz)and the 3-d B AR bandwidth of about 104.1%(3.17:1,1.57-4.98 GHz),a wide 3-d B gain bandwidth of 73.3%as well as the peak gain of 8.6 d Bic at 3.5 GHz.The overall size of antenna is 0.56λ×0.56λ×0.12λ(λrefers to the wavelength of the lowest operating frequency in free space).The good performance of this compact UWB CP antenna array is promising for applications in vehicular communications.
文摘As an important part of phased array system,the research on phased array antenna is very necessary.The phased array antenna achieves the scanning beam adaptively by regulating the phase difference between each array element.In this paper,a dual K-band circularly polarized antenna with high broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency is designed.We combine with the advantages of slot antenna and aperture antenna,use multimode waveguide cavity structure to design an aperture antenna,which is fed to waveguide circular polarizer by slot coupling in order to realize circular polarization radiation.Meanwhile,it has the characteristics of broadband,broadband beam,wide axial ratio bandwidth and high radiation efficiency.A slit antenna is designed by using a multimode waveguide cavity structure and a slit coupling feed to a waveguide circular polarizer is used to achieve circularly polarized radiation.The designed antenna consists of two K-band circularly polarized antenna units,and the spacing between the two units is 9.5 mm,which is fed by aK-band T/R module(Transmitter/Receiver module).In order to study the performance of the pattern in the case of the research group,the 2-unit structure is established.The simulation results of frequency–axial ratio bandwidth are given,and the simulation result of the antenna array is shown.The practical results of antenna design and test are also given.
文摘Circularly polarized antennas are used in communications between ground stations and satellites to achieve reliable communication links.The right-hand circular polarization and left-hand circular polarization are two types of circular polarization in satellite communications,they are used to support uplink and downlink communications.Circularly polarized antennas are used also in radar system for target detection,tracking and identification.The“three-element circularly polarized microstrip array antenna”is designed to produce left-handed circular polarization,make its size compact,make its bandwidth wider than 3.7-4.2GHz and achieve high gain.Circular polarization element antenna and three-element circularly polarized microstrip array antenna are designed and simulated in software HFSS,and the circular polarization element antenna is manufactured and tested in anechoic chamber.For circular polarization element antenna and three-element circularly polarized microstrip array antenna,the study analyzed these parameters:AR,S(1,1),VSWR,bandwidth,normalized impedance,gain and realized gain,radiation efficiency.After optimized,the study get the required results of them.
基金Project supported by the National Natural Science Foundation of China(Grant No.61372034)
文摘A new method to design an ultra-thin high-gain circularly-polarized antenna system with high efficiency is proposed based on the geometrical phase gradient metasurface(GPGM).With an accuracy control of the transmission phase and also the high transmission amplitude,the GPGM is capable of manipulating an electromagnetic wave arbitrarily.A focusing transmission lens working at Ku band is well optimized with the F /D of 0.32.A good focusing effect is demonstrated clearly by theoretical calculation and electromagnetic simulation.For further application,an ultra-thin single-layer transmissive lens antenna based on the proposed focusing metasurface operating at 13 GHz is implemented and launched by an original patch antenna from the perspective of high integration,simple structure,and low cost.Numerical and experimental results coincide well,indicating the advantages of the antenna system,such as a high gain of 17.6 d B,the axis ratio better than 2 d B,a high aperture efficiency of 41%,and also a simple fabrication process based on the convenient print circuit board technology.The good performance of the proposed antenna indicates promising applications in portable communication systems.
基金supported by the National Natural Science Foundation of China(61301105)the China Postdoctoral Science Foundation Funded Project(2013M531351)
文摘An accurate, complete and realistic channel model is re- quired to accurately analyze the system performance of a multiple input multiple output (MIMO) broadband satellite mobile commu- nication system with dual-orthogonal polarized antennas (DPAs). In most current studies, the channel characteristic matrix (CCM) is always formed by an independent identical distribution (i.i.d) model of Rayleigh or Rice distribution and nevertheless incomplete and inaccurate to describe a broadband dual-orthogonal polarized MIMO land mobile satellite (BDM-LMS) channel. This paper fo- cuses on establishing the BDM-LMS channel statistical model, which combines the 4-state broadband LMS channel model, the time selective fading features, the channel covariance information (CCI) channel model and polarization correlations between an- tennas. The modeling steps of the channel model are introduced. The main emphasis is placed on the effects of the factors, such as antenna numbers, temporal correlations, terminal environments, elevation angles and polarization correlations between the DPAs, on the channel capacity in the BDM-LMS system. Many simulation results are provided to illustrate the effects of these factors through comparisons of the transmit rate, ergodic capacity and outage capacity with different factor values. Besides, the MIMO outage capacity advantages, which indicate the benefits of MIMO com- pared with a single input single output (SISO) system under the same channel condition, are also studied under i.i.d or BDM-LMS channel.
文摘The beam scan with variable linear polarization directions of antenna arrays using MM/C transmit-receive (T/R) modules is explored. It is shown that the beam scan and the polarizations of electric fields can be controlled simultaneously if the forms of module arrangement are chosen properly and the amplitudes and the phases of array excitation are determined by the method presented in this article. Moreover, the calculations of the amplitudes and the phases of array excitation are simplified greatly while using the bounded conditions properly, and the desired beam sweep rate is achieved.
基金Supported by the National Natural Science Foundation of China(61102022)the Fundamental Research Foundation of Beijing Institute of Technology of China(20120542014)
文摘Six circularly polarized patch antennas with electromagnetic band gap(EBG)arranged at different locations were studied.These EBG antennas were compared in terms of impedance bandwidth,axial ratio(AR)bandwidth and radiation patterns.When the EBG cells were placed closer to the edge of the substrate,the EBG antenna had a larger front radiation and a narrower bandwidth.Integrating the EBG cells closer to the center of the patch resulted in a wider impedance bandwidth,a wider axial ratio bandwidth and a decreased front gain.
基金supported in part by the National Natural Science Foundation of China(61561039,61461044)the Natural Science Foundation of Ningxia(NZ14045)the Higher School Science and Technology Research Project of Ningxia(NGY2014051)
文摘The traditional geometrical depolarization model that single transmitter to single receiver provides a simple method of polarization channel modeling. It can obtain the geometrical depolarization effect of each path if known the antenna configuration, the polarization field radiation pattern and the spatial distribution of scatters. With the development of communication technology, information transmission spectrum is more and more scarce. The original model provides only a single channel polarization state, so the information will be limited that the polarization state carries in the polarization modulation. The research is so significance that how to carries polarization modulation information by using multi-antenna polarization state. However, the present study shows that have no depolarization effect model for multi-antenna systems. In this paper, we propose a multi-antenna geometrical depolarization model. On the basis of a single antenna to calculate the depolarization effect of the model, and through simulation to analysis the main factors that influence the depolarization effect. This article provides a multi-antenna geometrical depolarization channel modeling that can applied to large-scale array antenna, and to some extent increase the speed of information transmission.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61761010 and 61461016)in part by the Natural Science Foundation of Guangxi Zhuang Autonomous Region,China(Grant No.2015jj BB7002)+1 种基金in part by the Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processingin part by the Innovation Project of GUET Graduate Education(Grant No.2018JCX24)
文摘In this paper, a high refractive index metamaterial (HRM), whose element is composed of bilayer square patch (BSP) spaced by a dielectric plate, is proposed. By reducing the thickness of the dielectric plate and the gap between adjacent patches, the BSP can effectively enhance capacitive coupling and simultaneously suppress diamagnetic response, which significantly increases the refractive index of the proposed metamaterial. Furthermore, the high refractive index region is far away from the resonant region of the metamaterial, resulting in broadband. Based on these characteristics of BSP, a gradient refractive index (GRIN) lens with thin thickness (0.34/~0, where 2~0 is the wavelength at 5.75 GHz) is designed. By using this lens, we then design a circularly polarized horn antenna with high performance. The measurement results show that the 3-dB axial ratio bandwidth is 34.8% (4.75 GHz-6.75 GHz) and the antenna gain in this frequency range is increased by an average value of 3.4 dB. The proposed method opens up a new avenue to design high-performance antenna.
基金supported by the National Natural Science Foundation of China(NSFC)(61871338 and 61721001)。
文摘Reconfigurable antennas are becoming a major antenna technology for future wireless communications and sensing systems.It is known that,with a single linear polarization(LP)reconfigurable antenna element,a preferred polarization can be produced from a set of multiple polarization states,thus improving the quality of the communication link.This paper presents a new concept of a polarization programmable reconfigurable antenna array that consists of a number of polarization reconfigurable antenna elements with a finite number of possible polarization states.By employing a new optimization strategy and programming the polarization states of all the array elements,we demonstrate that it is possible to realize any desired LP in the vectorial array radiation pattern with accurate control of sidelobe and crosspolarization levels(XPLs),thereby achieving the desired polarization to perfectly match that of the required communications signal.Both numerical and experimental results are provided to prove the concept,and they agree well with each other.
文摘A polarized reconfigurable patch antenna is proposed in this paper.The proposed antenna is a dual cross-polarized patch antenna with a programmable power divider.The programmable power divider consists of two branch line couplers(BLC)and a digital phase shifter.By adjusting the phase of the phase shifter,the power ratio of the power divider can be changed,and thus the feed power to the antenna input port can be changed to reconfigure the antenna polarization.The phase-controlled power divider and the cross dual-polarized antenna are designed,fabricated and tested,and then they are combined to realize the polarized reconfigurable antenna.By moving the phase of the phase shifter,the antenna polarization is reconfigured into vertical polarization(VP),horizontal polarization(HP),and circular polarization(CP).The test is conducted at the frequency of 915 MHz,which is widely used for simultaneous wireless information and power transfer(SWIPT)in radio-frequency identification(RFID)applications.The results demonstrate that when the antenna is configured as CP,the axial ratio of the antenna is less than 3 dB,and when the antenna is configured as HP or VP,the axial ratio of the antenna exceeds 20 dB.Finally,experiments are conducted to verify the influence of antenna polarization changes on wireless power transmitting.As expected,the reconfigured antenna polarization can help improve the power transmitting efficiency.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province(No.2015JQ6221,No. 2015JQ6259,No.2015JM6341)the Fundamental Research Funds for the Central Universities(No.JB140109)+8 种基金the National Natural Science Foundation of China(No. 61401321,No.61372067)the National Hightech R&D Program of China(No. 2014AA01A704,No.2015AA7124058)the National Basic Research Program of China(No.2014CB340206)the National Key Technology R&D Program of China(No. 2012BAH16B00)the Next Generation Internet Program of China(No.CNGI1203003)the Research Culture Funds of Xi'an University of Science and Technology(No.201357)the Open Project of State Key Laboratory of Integrated Service Networks(No.ISN1601)the Open Research Fund of National Mobile Communications Research Laboratory (No.2015D01)the Science and Technology R&D Program of Shaanxi Province(No. 2014KJXX-49)
文摘Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.
文摘This paper presents an overview of the recent advances in reconfigurable antennas for wireless communications at University of Technology Sydney.In particular,it reports our latest progress in this research field,including a multi-linear polarization reconfigurable antenna,a pattern reconfigurable antenna with multiple switchable beams,and a combined pattern and polarization reconfigurable antenna.
基金This work was supported by the National Natural Science Foundation of China(Grant No.60371026).
文摘This article proposes a new kind of microstrip reflectarray antenna,of which the polarization could be reconfigured among all the polarization states instead of some fixed states in a dual-or multi-polarized antenna.The mechanism for polarized variability is so simple that only mechanical rotation is needed.Theoretical analysis shows that the reflected polarization covers all states and that the dual-or multi-layered unit structure sandwiched with air-gaps can broaden the bandwidth efficiently.Moreover,it is demonstrated that adopting more elements can enhance antenna gain.With these advantageous features,this kind of antenna has the potential significance for engineering applications in radar,communication,etc.In this article,a complete theoretical analysis as well as a specific design sample is given to verify this method.