Chiral metal nanoclusters(MNCs)are competitive candidates for fabricating circularly polarized light-emitting diodes(CPLEDs),but the device performance is greatly limited by the poor emission of MNCs in solid thin fil...Chiral metal nanoclusters(MNCs)are competitive candidates for fabricating circularly polarized light-emitting diodes(CPLEDs),but the device performance is greatly limited by the poor emission of MNCs in solid thin films.Herein,host molecule enhanced aggregation induced emission(AIE)of MNCs is demonstrated for fabricating highly efficient CPLEDs.Namely,on the basis of the AIE effect of atomically precise enantiomeric(R/S)-4-phenylthiazolidine-2-thione capped silver(R/S-Ag_(6)(PTLT)_(6))NCs in solid thin films,1,3-bis(carbazol-9-yl)benzene(mCP)is introduced as a host molecule to control the orientation and packing arrangements of R/S-Ag_(6)(PTLT)_(6) NCs throughπ–πinteractions with the R/S-Ag_(6)(PTLT)_(6) NCs and further enhance the AIE.The as-fabricated Ag_(6)(PTLT)_(6) NC/mCP hybrid solid thin film shows a high photoluminescence quantum yield of 71.0%close to that of Ag_(6)(PTLT)_(6) NC single crystal.As the hybrid films are employed as the active emission layers of CPLEDs,mCP also suppresses the triplettriplet annihilation and balances the charge transport.Thus,the CPLEDs exhibit a maximum brightness of 3,906 cd/m^(2),peak external quantum efficiency of 10.0%,electroluminescence dissymmetry factors of−5.3×10^(−3)and 4.7×10^(−3).展开更多
基金the National Natural Science Foundation of China(Nos.21902057 and 21773088)the China Postdoctoral Science Foundation(No.2021M691201)+1 种基金the Interdisciplinary Scientific Research Team Project of Jilin University(No.419021420367)the Special Project from MOST of China.
文摘Chiral metal nanoclusters(MNCs)are competitive candidates for fabricating circularly polarized light-emitting diodes(CPLEDs),but the device performance is greatly limited by the poor emission of MNCs in solid thin films.Herein,host molecule enhanced aggregation induced emission(AIE)of MNCs is demonstrated for fabricating highly efficient CPLEDs.Namely,on the basis of the AIE effect of atomically precise enantiomeric(R/S)-4-phenylthiazolidine-2-thione capped silver(R/S-Ag_(6)(PTLT)_(6))NCs in solid thin films,1,3-bis(carbazol-9-yl)benzene(mCP)is introduced as a host molecule to control the orientation and packing arrangements of R/S-Ag_(6)(PTLT)_(6) NCs throughπ–πinteractions with the R/S-Ag_(6)(PTLT)_(6) NCs and further enhance the AIE.The as-fabricated Ag_(6)(PTLT)_(6) NC/mCP hybrid solid thin film shows a high photoluminescence quantum yield of 71.0%close to that of Ag_(6)(PTLT)_(6) NC single crystal.As the hybrid films are employed as the active emission layers of CPLEDs,mCP also suppresses the triplettriplet annihilation and balances the charge transport.Thus,the CPLEDs exhibit a maximum brightness of 3,906 cd/m^(2),peak external quantum efficiency of 10.0%,electroluminescence dissymmetry factors of−5.3×10^(−3)and 4.7×10^(−3).