In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ...In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.展开更多
The interaction potentials between electron and atom play an important role in electron- atom scattering. Using three potential models, the absolute differential cross section has been calculated by the second Born ap...The interaction potentials between electron and atom play an important role in electron- atom scattering. Using three potential models, the absolute differential cross section has been calculated by the second Born approximation theory. Results show that these model potentials are successful in the laser-assisted e-Ar scattering system. The influence of static potential, exchange potential and polarization potential on the absolute differential cross section is also analyzed and discussed.展开更多
We have studied the effects of the finite range on the fusion and/or breakup of ^6He^+238U and ^11Li+^208pb Pb dynamic polarization potential approach. It has been found of the interaction between the fragments of t...We have studied the effects of the finite range on the fusion and/or breakup of ^6He^+238U and ^11Li+^208pb Pb dynamic polarization potential approach. It has been found of the interaction between the fragments of the projectile systems at near barrier energies within the framework of that at near barrier energies the maximum flux is lost to the breakup channel and at energies well above the Coulomb barrier the fusion coupled with the breakup channel opens up, initially with sharp rise and later becoming saturated at energy nearly twice of the Coulomb barrier. Further, it is found that the breakup cross section increases with the increasing range of the interaction between the fragments of the projectile while the fusion coupled with the breakup channel cross section decreases with the increasing range.展开更多
A modified distorted-wave Born approximation (DWBA) method is used to calculate the triple differential cross sections (TDCSs) in a coplanar asymmetric geometry for the electron impact single ionization of a He (...A modified distorted-wave Born approximation (DWBA) method is used to calculate the triple differential cross sections (TDCSs) in a coplanar asymmetric geometry for the electron impact single ionization of a He (ls2) atom at intermediate and lower energies. The post-collision interaction and the polarization effect in (e, 2e) collisions of helium are considered in the calculations. The polarization potentials from the damping method and density functional theory (DFT) are compared. Theoretical results are compared with the recent experimental data.展开更多
The effects of the polarization potential serve to model spectra of alkaline atoms. These effects have been known for a long time and notably explained by the physicist Max Born (1926). The experimental knowledge of t...The effects of the polarization potential serve to model spectra of alkaline atoms. These effects have been known for a long time and notably explained by the physicist Max Born (1926). The experimental knowledge of these alkaline spectra enables us to specify the values of these quantum defects. A simple code is used to calculate two quantum defects for which <em>δ<sub>l</sub></em><sub> </sub>can be distinguished as: <em>δ<sub>s</sub></em> <em>l</em> = 0 and <em>δ<sub>p</sub></em> <em>l</em> = 1. On the theoretical part, it is possible to have an analytical expression for these quantum defects <em>δ<sub>l</sub></em>. A second code gives the correct wave functions modified by the quantum defects <em>δ<sub>l</sub></em> with the condition for the principal number: <em>n</em><sub><span style="white-space:nowrap;"><span style="white-space:nowrap;">*</span></span></sub> = <em>n</em> – <em>δ</em><sub><em>l</em></sub> ≥ 1. It is well known that <em>δ</em><sub><em>l</em></sub> → 0 when the kinetic momentum <em>l</em> ≥ 4, and for such momenta the spectra turns out to be hydrogenic. Modern software such as Mathematica, allows us to efficiently generate the polynomes defining wave functions with fractional quantum numbers. This leads to a good theoretical representation of these wave functions. To get numerically the quantum defects, a simple code is given to obtain these quantities when the levels assigned to a transition are known. Then, the quantum defects are inserted into the arguments of the correct modified wave functions for the outer electron of an atom or ion undergoing the short range polarization potential.展开更多
Based on the equatorial vertical ion drift measured by DMSP and cross polar cap potential (Фcpc) from AMIE output during 2001 to 2003, this paper investigates the relationship of Фcpc and its temporal variation ra...Based on the equatorial vertical ion drift measured by DMSP and cross polar cap potential (Фcpc) from AMIE output during 2001 to 2003, this paper investigates the relationship of Фcpc and its temporal variation rate (△Фcpc) with the disturbed ion velocity (△Vx) which is the difference between the disturbed days (Kp〉4) and quiet days (Kp〈2). The statistical analysis shows: (1) The △Vx correlates better with AФcpc than with Фcpc, indicating that the electric field penetration is more easily to occur when solar wind input rapidly varies with time. (2) The optimal delay time of electric field penetration from the high-latitude magnetosphere to equatorial ionosphere has local time dependence which is longer on the nightside than on the dayside. It may be due to more complicated electrodynamic process on the nightside. (3) With the linear relationship between △Фcpc and △Vx, it is obtained that the penetration efficiency is about 4.5%-13.9% at day and 31%-42% at night, coinciding well with former studies.展开更多
Corrosion evolution during immersion tests (up to 43 days) of NiCu steel in deaerated 0.1 mol/L bicarbonate solutions was investigated by electrochemical measurements, scanning electron microscopy (SEM) and X-ray ...Corrosion evolution during immersion tests (up to 43 days) of NiCu steel in deaerated 0.1 mol/L bicarbonate solutions was investigated by electrochemical measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results show that NiCu steel transformed from the anodic dissolution in the early stage of immersion to a metastable passive state in the final stage as the open-circuit potential value shifted positively, which was aroused by the precipitation of corrosion products. This process was mainly promoted by the trace amount of oxygen. Simultaneously, dominant cathodic reaction transformed from the hydrogen evolution in early stage to reduction processes of corrosion products in later stages. Possible corrosion processes were discussed with the assistance of a corresponding Pourbaix diagram.展开更多
The effects of breakup reactions on elastic and α-production channels for the ^6Li+^116Sn system have been investigated at energies below and near the Coulomb barrier. The angular distributions of α-particle produc...The effects of breakup reactions on elastic and α-production channels for the ^6Li+^116Sn system have been investigated at energies below and near the Coulomb barrier. The angular distributions of α-particle production differential cross sections have been obtained at several projectile energies between 22 and 40 MeV. The measured breakup α-particle differential cross sections and elastic scattering angular distributions have been compared with the predictions of continuum-discretized coupled channels(CDCC) calculations. The influence of breakup coupling has also been investigated by extracting dynamic polarization potentials(DPP) from the CDCC calculations. From the predictions of CDCC calculations the relative importance of the nuclear, Coulomb, and total breakup contributions have also been investigated. The nuclear breakup couplings are observed to play an important role in comparison to the Coulomb breakup for the direct breakup mechanisms associated in the reaction of ~6Li projectile with ^(116)Sn target nuclei. The influence of strong nuclear breakup coupling exhibits suppression in the Coulomb-nuclear interference peak. The direct breakup cross sections from the CDCC calculations under-predict the measured α-particle differential cross sections at all energies. This suggests that the measured α particles may also have contributions from other possible breakup reaction channels.展开更多
文摘In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.
文摘The interaction potentials between electron and atom play an important role in electron- atom scattering. Using three potential models, the absolute differential cross section has been calculated by the second Born approximation theory. Results show that these model potentials are successful in the laser-assisted e-Ar scattering system. The influence of static potential, exchange potential and polarization potential on the absolute differential cross section is also analyzed and discussed.
文摘We have studied the effects of the finite range on the fusion and/or breakup of ^6He^+238U and ^11Li+^208pb Pb dynamic polarization potential approach. It has been found of the interaction between the fragments of the projectile systems at near barrier energies within the framework of that at near barrier energies the maximum flux is lost to the breakup channel and at energies well above the Coulomb barrier the fusion coupled with the breakup channel opens up, initially with sharp rise and later becoming saturated at energy nearly twice of the Coulomb barrier. Further, it is found that the breakup cross section increases with the increasing range of the interaction between the fragments of the projectile while the fusion coupled with the breakup channel cross section decreases with the increasing range.
文摘A modified distorted-wave Born approximation (DWBA) method is used to calculate the triple differential cross sections (TDCSs) in a coplanar asymmetric geometry for the electron impact single ionization of a He (ls2) atom at intermediate and lower energies. The post-collision interaction and the polarization effect in (e, 2e) collisions of helium are considered in the calculations. The polarization potentials from the damping method and density functional theory (DFT) are compared. Theoretical results are compared with the recent experimental data.
文摘The effects of the polarization potential serve to model spectra of alkaline atoms. These effects have been known for a long time and notably explained by the physicist Max Born (1926). The experimental knowledge of these alkaline spectra enables us to specify the values of these quantum defects. A simple code is used to calculate two quantum defects for which <em>δ<sub>l</sub></em><sub> </sub>can be distinguished as: <em>δ<sub>s</sub></em> <em>l</em> = 0 and <em>δ<sub>p</sub></em> <em>l</em> = 1. On the theoretical part, it is possible to have an analytical expression for these quantum defects <em>δ<sub>l</sub></em>. A second code gives the correct wave functions modified by the quantum defects <em>δ<sub>l</sub></em> with the condition for the principal number: <em>n</em><sub><span style="white-space:nowrap;"><span style="white-space:nowrap;">*</span></span></sub> = <em>n</em> – <em>δ</em><sub><em>l</em></sub> ≥ 1. It is well known that <em>δ</em><sub><em>l</em></sub> → 0 when the kinetic momentum <em>l</em> ≥ 4, and for such momenta the spectra turns out to be hydrogenic. Modern software such as Mathematica, allows us to efficiently generate the polynomes defining wave functions with fractional quantum numbers. This leads to a good theoretical representation of these wave functions. To get numerically the quantum defects, a simple code is given to obtain these quantities when the levels assigned to a transition are known. Then, the quantum defects are inserted into the arguments of the correct modified wave functions for the outer electron of an atom or ion undergoing the short range polarization potential.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40974087, 40874085)
文摘Based on the equatorial vertical ion drift measured by DMSP and cross polar cap potential (Фcpc) from AMIE output during 2001 to 2003, this paper investigates the relationship of Фcpc and its temporal variation rate (△Фcpc) with the disturbed ion velocity (△Vx) which is the difference between the disturbed days (Kp〉4) and quiet days (Kp〈2). The statistical analysis shows: (1) The △Vx correlates better with AФcpc than with Фcpc, indicating that the electric field penetration is more easily to occur when solar wind input rapidly varies with time. (2) The optimal delay time of electric field penetration from the high-latitude magnetosphere to equatorial ionosphere has local time dependence which is longer on the nightside than on the dayside. It may be due to more complicated electrodynamic process on the nightside. (3) With the linear relationship between △Фcpc and △Vx, it is obtained that the penetration efficiency is about 4.5%-13.9% at day and 31%-42% at night, coinciding well with former studies.
基金supported by the National Natural Science Foundation of China (No. 51471175)
文摘Corrosion evolution during immersion tests (up to 43 days) of NiCu steel in deaerated 0.1 mol/L bicarbonate solutions was investigated by electrochemical measurements, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Results show that NiCu steel transformed from the anodic dissolution in the early stage of immersion to a metastable passive state in the final stage as the open-circuit potential value shifted positively, which was aroused by the precipitation of corrosion products. This process was mainly promoted by the trace amount of oxygen. Simultaneously, dominant cathodic reaction transformed from the hydrogen evolution in early stage to reduction processes of corrosion products in later stages. Possible corrosion processes were discussed with the assistance of a corresponding Pourbaix diagram.
基金DAE-BRNS for financial assistance through a major research projectsupported by National Natural Science Foundation of China (U1432247,11575256,U1632138,11605253)+2 种基金China Postdoctoral Science Foundation (2016M602906)CNPqFAPERJ for partial financial support
文摘The effects of breakup reactions on elastic and α-production channels for the ^6Li+^116Sn system have been investigated at energies below and near the Coulomb barrier. The angular distributions of α-particle production differential cross sections have been obtained at several projectile energies between 22 and 40 MeV. The measured breakup α-particle differential cross sections and elastic scattering angular distributions have been compared with the predictions of continuum-discretized coupled channels(CDCC) calculations. The influence of breakup coupling has also been investigated by extracting dynamic polarization potentials(DPP) from the CDCC calculations. From the predictions of CDCC calculations the relative importance of the nuclear, Coulomb, and total breakup contributions have also been investigated. The nuclear breakup couplings are observed to play an important role in comparison to the Coulomb breakup for the direct breakup mechanisms associated in the reaction of ~6Li projectile with ^(116)Sn target nuclei. The influence of strong nuclear breakup coupling exhibits suppression in the Coulomb-nuclear interference peak. The direct breakup cross sections from the CDCC calculations under-predict the measured α-particle differential cross sections at all energies. This suggests that the measured α particles may also have contributions from other possible breakup reaction channels.