The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study.The influence of variations in the azimuthal angle(θ)and polar angle(φ...The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study.The influence of variations in the azimuthal angle(θ)and polar angle(φ)of coarse particles on drainage channel structure was analyzed,and the drainage mechanism of the bed was studied.Results showed that water discharge in the bed reduced the size of pores and throat channels,increasing slurry concentration.The throat channel structure was a key component of the drainage process.Theφandθof particles changed predominantly along the length direction.The changes inφhad a cumulative plugging effect on the drainage channel and increased the difficulty of water discharge.The rake and rod formed a shear ring in the tailings bed with shear,and theθdistribution of particles changed from disorderly to orderly during the rotation process.The drainage channel was squeezed during the shearing process with the change inθ,which broke the channel structure,encouraged water discharge in the bed,and facilitated a further increase in slurry concentration.The findings of this work are expected to offer theoretical guidance for preparing high-concentration underflow in the tailings thickening process.展开更多
External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams ...External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.展开更多
Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contributio...Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm^-1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (-25.4±1.3)%, respectively.展开更多
Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption...Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption of unpolarized target light,most of the existing underwater polari-metric methods lose part of the polarization information,resulting in degraded imaging quality.In this work,a novel underwater polarimetric method is reported,which obtains the angle of polariza-tion(AOP)map to improve imaging quality.Specifically,the Stokes vectors were exploited to re-move the backscattering effect by obtaining two pairs of orthogonal polarization sub-images of the underwater scene.The target reflected light and the angle between the polarization directions of the target reflected light and the backscattered light were computed through the two groups of the or-thogonal polarized sub-images.The AOP map of the target light could be derived from the Stokes vectors.Then,the transmission map of the target light was estimated by using the non-local color priorly combined with the properties of light propagating underwater.Experiments show that the reported technique enables distinguishing different targets when the colors are similar.The quantit-ative metrics validate that the reported technique produces state-of-the-art performance for under-water imaging.展开更多
The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties...The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.展开更多
Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to dete...Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to determine the orientation of NV axis with the aid of a static magnetic field.By measuring the optically detected magnetic resonance spectra,we can precisely extract the polar angle information between the NV axis and the known magnetic field.Combining with the polar angle information of different kinds of NV centers,we employ the Nelder-Mead algorithm to get the optimal solution of the orientation of NV axis.This method is simple and efficient,and is easily applied in NV-based quantum sensing.展开更多
Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these ante...Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.展开更多
A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in f...A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.展开更多
Based on the two-dimensional(2D)three-component first-order velocity-stress equation,the high order staggered mesh finite difference numerical simulation method was used to simulate the elastic and viscoelastic tilted...Based on the two-dimensional(2D)three-component first-order velocity-stress equation,the high order staggered mesh finite difference numerical simulation method was used to simulate the elastic and viscoelastic tilted transversely isotropic(TTI)media.The perfect matched layer(PML)absorption boundary condition was selected to eliminate the boundary effect.The results show that:(①)Under the condition of fixed elastic parameters of elastic TTI medium,when the polarization angle and azimuth are 60°and 45°respectively,the degree of shear wave splitting is significantly greater than the angle of 0°;②The influence of viscoelasticity on TTI medium is mainly reflected in the amplitude.If the quality factor decreases,the attenuation of the seismic wave amplitude increases,causing the waveform to become wider and distorted.If the quality factor increases,the viscoelastic medium becomes closer to elastic medium;③For TTI medium with different polarization angle and azimuth angle in the upper and lower layers,the shear wave can multiple splits at the interface of medium.The symmetry of seismograms is affected by the polarization angle and azimuth angle of TTI medium;④Viscoelasticity has a great influence on reflected wave,transmitted wave and converted wave in the low-velocity model.When the viscoelasticity is strong,the weaker waves may not be shown.展开更多
Lane detection based on machine vision,a key application in intelligent transportation,is generally characterized by gradient information of lane edge and plays an important role in advanced driver assistance systems(...Lane detection based on machine vision,a key application in intelligent transportation,is generally characterized by gradient information of lane edge and plays an important role in advanced driver assistance systems(ADAS).However,gradient information varies with illumination changes.In the complex scenes of urban roads,highlight and shadow have effects on the detection,and non-lane objects also lead to false positives.In order to improve the accuracy of detection and meet the robustness requirement,this paper proposes a method of using top-hat transformation to enhance the contrast and filter out the interference of non-lane objects.And then the threshold segmentation algorithm based on local statistical information and Hough transform algorithm with polar angle and distance constraint are used for lane fitting.Finally,Kalman filter is used to correct lane lines which are wrong detected or missed.The experimental results show that computation times meet the real-time requirements,and the overall detection rate of the proposed method is 95.63%.展开更多
The propagation of three-dimensional plane waves at a traction free boundary of a half-space composed of triclinic crystalline material is discussed. A method has been developed to find the analytical expressions of a...The propagation of three-dimensional plane waves at a traction free boundary of a half-space composed of triclinic crystalline material is discussed. A method has been developed to find the analytical expressions of all the three phase velocities of quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) in three dimensions. Closed form expressions in three dimensions for the amplitude ratios of reflection coefficients of qP, qSV and qSH waves in a triclinic medium are obtained. These expressions are used for numerically studying the variation of the reflection coetticients with the angle of incidence. The graphs are drawn for different polar angle and azimuth. Numerical results presented indicate that the anisotropy affect the reflection coetticients significantly in the three dimensional case compared to the two-dimensional case.展开更多
Turbocharging is an efficient approach for addressing power reduction and oil consumption increase in aviation piston engines during high-altitude flights.However,a turbocharger significantly increases the complexity ...Turbocharging is an efficient approach for addressing power reduction and oil consumption increase in aviation piston engines during high-altitude flights.However,a turbocharger significantly increases the complexity of a power system,and its considerably complex matching relation with the engine results in a coupling of failure modes.Conventional analytical methods are hard to identify failure-inducing factors.Consequently,safety issues are becoming increasingly prominent.This study focuses on methods for identifying failure-inducing factors.A whole-machine system model is established and validated through experimentation.The response surface method is employed to further abstract the system simulation model to a surrogate model(average error:~3%)in order to reduce the computational cost while ensuring accuracy.On this basis,an improved Correspondence Analysis(CA)-Polar Angle(PA)-based Classification(PAC)is proposed to identify the key factors affecting the failure mode of turbochargers.This identification method is based on the row profile coordinates G varying with the numerical deviations of the key factors,and is capable of effectively identifying the key factors affecting the failure.In a validation example,this method identifies the diameter of the exhaust valve(e_(2))as the primary factor affecting the safety margin for each work boundary.展开更多
The Gaussian vortex beam is assumed to be linearly polarized.The analytical expression of the electric field of a linearly polarized Gaussian vortex beam propagating in free space is derived by using the vectorial Ray...The Gaussian vortex beam is assumed to be linearly polarized.The analytical expression of the electric field of a linearly polarized Gaussian vortex beam propagating in free space is derived by using the vectorial Rayleigh-Sommerfeld integral formulae.The propagating magnetic field of the linearly polarized Gaussian vortex beam is presented by taking the curl of the electric field.By employing the electromagnetic field of the linearly polarized Gaussian vortex beam beyond the paraxial approximation,the analytical expression of the angular momentum density of the linearly polarized Gaussian vortex beam is derived.The three components of the angular momentum density of a linearly polarized Gaussian vortex beam are demonstrated in the reference plane.The effects of the linearly polarized angle and the topological charge on the three components of the angular momentum density are investigated.To acquire the more longitudinal angular momentum density requires such an optimal choice that the linearly polarized angle is set to be zero and the topological charge increases.This research is useful to the optical trapping,the optical guiding,and the optical manipulation.展开更多
Bioinspired polarized skylight navigation,which can be used in unfamiliar territories,is an important alternative autonomous navigation technique in the absence of Global Navigation Satellite System(GNSS).However,the ...Bioinspired polarized skylight navigation,which can be used in unfamiliar territories,is an important alternative autonomous navigation technique in the absence of Global Navigation Satellite System(GNSS).However,the polarization pattern in night environment with noise effects and model uncertainties is a less explored area.Although several decades have passed since the first publication about the polarization of the moonlit night sky,the usefulness of nocturnal polarization navigation is only sporadic in previous researches.This study demonstrates that the nocturnal polarized light is capable of providing accurate and stable navigation information in dim light outdoor environment.Based on the statistical characteristics of Angle of Polarization(Ao P)error,a probability density estimation method is proposed for heading determination.To illustrate the application potentials,the simulation and outdoor experiments are performed.Resultingly,the proposed method robustly models the distribution of Ao P error and gives accurate heading estimation evaluated by Standard Deviation(STD)which is 0.32°in a clear night sky and 0.47°in a cloudy night sky.展开更多
基金financially supported by the National Key R&D Program of China(No.2022YFC2903803)National Natural Science Foundation of China(No.52130404)+4 种基金Guangdong Basic and Applied Basic Research Foundation(No.2021A1515110161)ANID(Chile)through Fondecyt project 1210610Centro de Modelamiento Matemático(BASAL funds for Centers of Excellence FB210005)CRHIAM project ANID/FONDAP/15130015Anillo project ANID/ACT210030。
文摘The 3D reconstruction and quantitative characterization of drainage channels and coarse tailings particles in a bed were conducted in this study.The influence of variations in the azimuthal angle(θ)and polar angle(φ)of coarse particles on drainage channel structure was analyzed,and the drainage mechanism of the bed was studied.Results showed that water discharge in the bed reduced the size of pores and throat channels,increasing slurry concentration.The throat channel structure was a key component of the drainage process.Theφandθof particles changed predominantly along the length direction.The changes inφhad a cumulative plugging effect on the drainage channel and increased the difficulty of water discharge.The rake and rod formed a shear ring in the tailings bed with shear,and theθdistribution of particles changed from disorderly to orderly during the rotation process.The drainage channel was squeezed during the shearing process with the change inθ,which broke the channel structure,encouraged water discharge in the bed,and facilitated a further increase in slurry concentration.The findings of this work are expected to offer theoretical guidance for preparing high-concentration underflow in the tailings thickening process.
基金supported by the National Natural Science Foundation of China (Grant No 50575110)
文摘External-cavity birefringence feedback effects of the microchip Nd:YAG laser are presented. When a birefringence element is placed in the external feedback cavity of the laser, two orthogonally polarized laser beams with a phase difference are output. The phase difference is twice as large as the phase retardation in the external cavity along the two orthogonal directions. The variable extra-cavity birefringence, caused by rotation of the external-cavity birefringenee element, results in tunable phase difference between the two orthogonally polarized beams. This means that the roll angle information has been translated to phase difference of two output laser beams. A theoretical analysis based on the Fabry-Perot cavity equivalent model and refractive index ellipsoid is presented, which is in good agreement with the experimental results. This phenomenon has potential applications for roll angle measurement.
文摘Here we report a novel twin polarization angle (TPA) approach in the quantitative chirality detection with the surface sum-frequency generation vibrational spectroscopy (SFG-VS). Generally, the achiral contribution dominates the surface SFG-VS signal, and the pure chiral signal is usually two or three orders of magnitude smaller. Therefore, it has been difficult to make quantitative detection and analysis of the chiral contributions to the surface SFG- VS signal. In the TPA method, by varying together the polarization angles of the incoming visible light and the sum frequency signal at fixed s or p polarization of the incoming infrared beam, the polarization dependent SFG signal can give not only direct signature of the chiral contribution in the total SFG-VS signal, but also the accurate measurement of the chiral and achiral components in the surface SFG signal. The general description of the TPA method is presented and the experiment test of the TPA approach is also presented for the SFG-VS from the S- and R-limonene chiral liquid surfaces. The most accurate degree of chiral excess values thus obtained for the 2878 cm^-1 spectral peak of the S- and R-limonene liquid surfaces are (23.7±0.4)% and (-25.4±1.3)%, respectively.
基金supported by the National Natural Science Foundation of China(No.61991451)Graduate Interdisciplinary In-novation Project of Yangtze Delta Region Academy of Beijing Institute of Technology(Jiaxing)(GIIP2021-016).
文摘Obtaining polarization information enables researchers to enhance underwater imaging quality by removing backscattering effect and to distinguish targets of different materials.However,due to the simplified assumption of unpolarized target light,most of the existing underwater polari-metric methods lose part of the polarization information,resulting in degraded imaging quality.In this work,a novel underwater polarimetric method is reported,which obtains the angle of polariza-tion(AOP)map to improve imaging quality.Specifically,the Stokes vectors were exploited to re-move the backscattering effect by obtaining two pairs of orthogonal polarization sub-images of the underwater scene.The target reflected light and the angle between the polarization directions of the target reflected light and the backscattered light were computed through the two groups of the or-thogonal polarized sub-images.The AOP map of the target light could be derived from the Stokes vectors.Then,the transmission map of the target light was estimated by using the non-local color priorly combined with the properties of light propagating underwater.Experiments show that the reported technique enables distinguishing different targets when the colors are similar.The quantit-ative metrics validate that the reported technique produces state-of-the-art performance for under-water imaging.
基金Project supported by the Natural Science Foundation of Shaanxi Province of China(Grant No.2022JQ-356)the Youth Fund of Rocket Force University of Engineering(Grant No.2022QN-B017)the National Natural Science Foundation of China(Grant No.51905542)。
文摘The self-similarity,high geometric symmetry and spatial utilization properties of fractal structures provide new methods for the development of absorbing metamaterials.In this paper,the microwave absorption properties of the gradient dendritic fractal metamaterial structure(GDFMs)based on carbon black and acrylonitrile-butadiene-styrene composites were investigated.The optimal metamaterial structure has an effective absorption in the frequency range of 4.5-40 GHz.The rotational-symmetry GDFMs leads to the polarization independence,and the GDFMs exhibits a wide-angle absorption performance for both TE and TM waves.It is expected that the proposed GDFMs has good application prospects in electromagnetic wave absorption.
基金This work was supported by the National Key R&D Program of China(Grant No.2020YFA0309400)the National Natural Science Foundation of China(Grant No.12174081)the Fundamental Research Funds for the Central Universities(Grant Nos.JZ2021HGTB0126 and PA2021KCPY0052).
文摘Nitrogen-vacancy(NV)centers in a bulk diamond are often employed to realize measurement of multiple physical quantities,which depends on orientation information of NV axis.We report a fast and effective method to determine the orientation of NV axis with the aid of a static magnetic field.By measuring the optically detected magnetic resonance spectra,we can precisely extract the polar angle information between the NV axis and the known magnetic field.Combining with the polar angle information of different kinds of NV centers,we employ the Nelder-Mead algorithm to get the optimal solution of the orientation of NV axis.This method is simple and efficient,and is easily applied in NV-based quantum sensing.
文摘Frequency selective surfaces(FSSs)play an important role in wireless systems as these can be used as filters,in isolating the unwanted radiation,in microstrip patch antennas for improving the performance of these antennas and in other 5G applications.The analysis and design of the double concentric ring frequency selective surface(DCRFSS)is presented in this research.In the sub-6 GHz 5G FR1 spectrum,a computational synthesis technique for creating DCRFSS based spatial filters is proposed.The analytical tools presented in this study can be used to gain a better understanding of filtering processes and for constructing the spatial filters.Variation of the loop sizes,angles of incidence,and polarization of the concentric rings are the factors which influence the transmission coefficient as per the thorough investigation performed in this paper.A novel synthesis approach based on mathematical equations that may be used to determine the physical parameters ofDCRFSSbased spatial filters is presented.The proposed synthesis technique is validated by comparing results from high frequency structure simulator(HFSS),Ansys electronic desktop circuit editor,and an experimental setup.Furthermore,the findings acquired from a unit cell are expanded to a 2×2 array,which shows identical performance and therefore proves its stability.
基金supported by the National Natural Science Foundation of China(Grant Nos.61331005,61001039,and 41390454)
文摘A chiral metasurface is proposed to realize a tri-band polarization angle insensitive cross-polarization converter. The unit cell of the chiral metamaterial is composed by four twisted anisotropic structure pairs in four-fold rotation symmetry. The simulation results show that this device can work at 9.824 GHz, 11.39 GHz, and 13.37 GHz with low loss and a high polarization conversion ratio (PCR) of more than 99%. The proposed design can transmit the co-polarization wave at 14.215 GHz, like a frequency selective surface. The study of the current and electric fields distributions indicates that the cross-polarization transmission is due to electric dipole coupling.
基金the National Natural Science Foundation of China(Nos.41974048,41574078,41604039,41604102)the Guangxi Natural Science Foundation of China(Nos.2018GXNSFAA138059,2016GXNSFBA380082 and 2018GXNSFBA050005)+1 种基金Guangxi Science and Technology Base and Talent Project(Gui Kc AD19110057)Guangxi High School Junior Teachers Foundation Funding for capacity improvement projects(No.2019KY0264).
文摘Based on the two-dimensional(2D)three-component first-order velocity-stress equation,the high order staggered mesh finite difference numerical simulation method was used to simulate the elastic and viscoelastic tilted transversely isotropic(TTI)media.The perfect matched layer(PML)absorption boundary condition was selected to eliminate the boundary effect.The results show that:(①)Under the condition of fixed elastic parameters of elastic TTI medium,when the polarization angle and azimuth are 60°and 45°respectively,the degree of shear wave splitting is significantly greater than the angle of 0°;②The influence of viscoelasticity on TTI medium is mainly reflected in the amplitude.If the quality factor decreases,the attenuation of the seismic wave amplitude increases,causing the waveform to become wider and distorted.If the quality factor increases,the viscoelastic medium becomes closer to elastic medium;③For TTI medium with different polarization angle and azimuth angle in the upper and lower layers,the shear wave can multiple splits at the interface of medium.The symmetry of seismograms is affected by the polarization angle and azimuth angle of TTI medium;④Viscoelasticity has a great influence on reflected wave,transmitted wave and converted wave in the low-velocity model.When the viscoelasticity is strong,the weaker waves may not be shown.
文摘Lane detection based on machine vision,a key application in intelligent transportation,is generally characterized by gradient information of lane edge and plays an important role in advanced driver assistance systems(ADAS).However,gradient information varies with illumination changes.In the complex scenes of urban roads,highlight and shadow have effects on the detection,and non-lane objects also lead to false positives.In order to improve the accuracy of detection and meet the robustness requirement,this paper proposes a method of using top-hat transformation to enhance the contrast and filter out the interference of non-lane objects.And then the threshold segmentation algorithm based on local statistical information and Hough transform algorithm with polar angle and distance constraint are used for lane fitting.Finally,Kalman filter is used to correct lane lines which are wrong detected or missed.The experimental results show that computation times meet the real-time requirements,and the overall detection rate of the proposed method is 95.63%.
文摘The propagation of three-dimensional plane waves at a traction free boundary of a half-space composed of triclinic crystalline material is discussed. A method has been developed to find the analytical expressions of all the three phase velocities of quasi-P (qP), quasi-SV (qSV) and quasi-SH (qSH) in three dimensions. Closed form expressions in three dimensions for the amplitude ratios of reflection coefficients of qP, qSV and qSH waves in a triclinic medium are obtained. These expressions are used for numerically studying the variation of the reflection coetticients with the angle of incidence. The graphs are drawn for different polar angle and azimuth. Numerical results presented indicate that the anisotropy affect the reflection coetticients significantly in the three dimensional case compared to the two-dimensional case.
基金supported by the Innovation Team of Complex System Safety and Airworthiness of Aeroengine from the Co-Innovation Center for Advanced Aeroengine of Chinafunded by the National Natural Science Foundation of China and the Civil Aviation Administration of China(No.U1833109)。
文摘Turbocharging is an efficient approach for addressing power reduction and oil consumption increase in aviation piston engines during high-altitude flights.However,a turbocharger significantly increases the complexity of a power system,and its considerably complex matching relation with the engine results in a coupling of failure modes.Conventional analytical methods are hard to identify failure-inducing factors.Consequently,safety issues are becoming increasingly prominent.This study focuses on methods for identifying failure-inducing factors.A whole-machine system model is established and validated through experimentation.The response surface method is employed to further abstract the system simulation model to a surrogate model(average error:~3%)in order to reduce the computational cost while ensuring accuracy.On this basis,an improved Correspondence Analysis(CA)-Polar Angle(PA)-based Classification(PAC)is proposed to identify the key factors affecting the failure mode of turbochargers.This identification method is based on the row profile coordinates G varying with the numerical deviations of the key factors,and is capable of effectively identifying the key factors affecting the failure.In a validation example,this method identifies the diameter of the exhaust valve(e_(2))as the primary factor affecting the safety margin for each work boundary.
基金supported by the National Natural Science Foundation of China(Grant Nos.61178016 and 10974179)Zhejiang Provincial Natural Science Foundation of China(Grant No.Y1090073)
文摘The Gaussian vortex beam is assumed to be linearly polarized.The analytical expression of the electric field of a linearly polarized Gaussian vortex beam propagating in free space is derived by using the vectorial Rayleigh-Sommerfeld integral formulae.The propagating magnetic field of the linearly polarized Gaussian vortex beam is presented by taking the curl of the electric field.By employing the electromagnetic field of the linearly polarized Gaussian vortex beam beyond the paraxial approximation,the analytical expression of the angular momentum density of the linearly polarized Gaussian vortex beam is derived.The three components of the angular momentum density of a linearly polarized Gaussian vortex beam are demonstrated in the reference plane.The effects of the linearly polarized angle and the topological charge on the three components of the angular momentum density are investigated.To acquire the more longitudinal angular momentum density requires such an optimal choice that the linearly polarized angle is set to be zero and the topological charge increases.This research is useful to the optical trapping,the optical guiding,and the optical manipulation.
基金supported by National Natural Science Foundation of China(Nos.61627810,61751302,61833013 and 61973012)。
文摘Bioinspired polarized skylight navigation,which can be used in unfamiliar territories,is an important alternative autonomous navigation technique in the absence of Global Navigation Satellite System(GNSS).However,the polarization pattern in night environment with noise effects and model uncertainties is a less explored area.Although several decades have passed since the first publication about the polarization of the moonlit night sky,the usefulness of nocturnal polarization navigation is only sporadic in previous researches.This study demonstrates that the nocturnal polarized light is capable of providing accurate and stable navigation information in dim light outdoor environment.Based on the statistical characteristics of Angle of Polarization(Ao P)error,a probability density estimation method is proposed for heading determination.To illustrate the application potentials,the simulation and outdoor experiments are performed.Resultingly,the proposed method robustly models the distribution of Ao P error and gives accurate heading estimation evaluated by Standard Deviation(STD)which is 0.32°in a clear night sky and 0.47°in a cloudy night sky.