Using the improved Energy-Environmental Version of the GTAP Model (GTAP-E) and the sixth version of emission database of non-CO2 greenhouse gases, we simulate the emission reduction potential of non-CO2 greenhouse gas...Using the improved Energy-Environmental Version of the GTAP Model (GTAP-E) and the sixth version of emission database of non-CO2 greenhouse gases, we simulate the emission reduction potential of non-CO2 greenhouse gases in China and its policy implications. The results show that at present, China is a country with the greatest emission of non-CO2 greenhouse gases in the world, and the emission will account for about 20% of the world's total emission in 2020. The proportion of emission of non-CO2 greenhouse gases from the agricultural sector reaches 73%. In the next 10 years, the emission of non-CO2 gases from cattle and sheep, industry and service industry will experience the highest growth rate; the growth rate of emission from service industry will be higher than that of emission from industry, and the emission from service industry will exceed that from industry after 2010. China can implement emission reduction policy of non-CO2 greenhouse gases to ease the international pressure of CO2 emission reduction. Although the high carbon tax collected can reduce considerable non-CO2 emission, there is little difference in policy efficiency between high carbon tax and low carbon tax. So, in the implementation of emission reduction carbon tax policy of non-CO2 gases, it is necessary to control the carbon tax at a low level.展开更多
The issues related to climate change such as depletion of energy resources and continuous high oil prices,global warming,and development of clean energy are adopted and discussed as a national agenda internationally.T...The issues related to climate change such as depletion of energy resources and continuous high oil prices,global warming,and development of clean energy are adopted and discussed as a national agenda internationally.To cope with these domestic and foreign energy and environmental problems actively,government must prepare prudently in methodology of greenhouse gas reduction.Especially,as energy consumption of buildings accounts for 26 of national consumption,plans to reduce energy consumption of buildings are needed.Each region has a unique nature of energy consumption or consumption patterns,thus an appropriate policy or goal to reduce greenhouse gas (GHG) should be selected.For this,effects on the current policies for GHG as well as nature of energy consumption of buildings should be analyzed.We analyzed quantitatively the effectiveness of policies to reduce GHG emission in public buildings.展开更多
China is one of the major producers of chlorodifluoromethane(HCFC-22)in the world.A large amount of fluoroform(HFC-23)is emitted during the production of HCFC-22.Emission factors of HFC-23 were calculated in accordanc...China is one of the major producers of chlorodifluoromethane(HCFC-22)in the world.A large amount of fluoroform(HFC-23)is emitted during the production of HCFC-22.Emission factors of HFC-23 were calculated in accordance with the monitoring reports of eleven HFC-23 clean development mechanism(CDM)projects in China and the HFC-23emissions in 2000–2010 as well as that in 2011–2020 were estimated and projected,respectively.It is expected that,by the end of 2020,emissions of HFC-23 in China will be as much as 230 Mt CO2-eq.If HCFC-22 producers voluntarily reduced HFC-23 emissions,it would contribute 3.2%–3.6%to the national CO2emission reduction target for 2020.展开更多
Climate changes that occur as a result of global warming caused by increasing amounts of greenhouse gases(GHGs)released into the atmosphere are an alarming issue.Controlling greenhouse gas emissions is critically impo...Climate changes that occur as a result of global warming caused by increasing amounts of greenhouse gases(GHGs)released into the atmosphere are an alarming issue.Controlling greenhouse gas emissions is critically important for the current and future status of mining activities.The mining industry is one of the significant contributors of greenhouse gases.In essence,anthropogenic greenhouse gases are emitted directly during the actual mining and indirectly released by the energy-intensive activities associated with mining equipment,ore transport,and the processing industry.Therefore,we reviewed both direct and indirect GHG emissions to analyze how mining contributes to climate change.In addition,we showed how climate change impacts mineral production.This assessment was performed using a GHG inventory model for the gases released from mines undergoing different product life cycles.We also elucidate the key issues and various research outcomes to demonstrate how the mining industry and policymakers can mitigate GHG emission from the mining sector.The review concludes with an overview of GHG release reduction and mitigation strategies.展开更多
With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing m...With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.展开更多
Petrochemical enterprises have become a major source of global greenhouse gas(GHG)emissions.Yet,due to the unavailability of basic data,there is still a lack of case studies to quantify GHG emissions and provide petro...Petrochemical enterprises have become a major source of global greenhouse gas(GHG)emissions.Yet,due to the unavailability of basic data,there is still a lack of case studies to quantify GHG emissions and provide petrochemical enterprises with guidelines for implementing energy conservation and emission reduction strategies.Therefore,this study conducted a life cycle assessment(LCA)analysis to estimate the GHG emissions of four typical petrochemical enterprises in China,using first-hand data,to determine possible emission reduction measures.The analytical data revealed that Dushanzi Petrochemical(DSP)has the highest GHG emission intensity(1.17 tons CO_(2)e/ton),followed by Urumqi Petrochemical(UP)(1.08 tons CO_(2)e/ton),Dalian Petrochemical(DLP)(average 0.58 tons CO_(2)e/ton)and Karamay Petrochemical(KP)(average 0.50 tons CO_(2)e/ton)over the whole life cycle.At the same time,GHG emissions during fossil fuel combustion were the largest contributor to the whole life cycle,accounting for about 77.31%–94.27% of the total emissions.In the fossil-fuel combustion phase,DSP had the highest unit GHG emissions(1.20 tons CO_(2)e),followed by UP(0.89 tons CO_(2)e).In the industrial production phase,DLP had the highest unit GHG emissions(average 0.13 tons CO_(2)e/ton),followed by UP(0.10 tons CO_(2)e/ton).During the torch burning phase,torch burning under accident conditions was the main source of GHG emissions.It is worth noting that the CO_(2) recovery stage has"negative value,"indicating that it will bring some environmental benefits.Further scenario analysis shows that effective policies and advanced technologies can further reduce GHG emissions.展开更多
Hydropower, next to coal, is the second most important source of electric power supply in China. It amounted to 20.4% of the nation's total installed capacity of electricity generation in 2011. To provide a comprehen...Hydropower, next to coal, is the second most important source of electric power supply in China. It amounted to 20.4% of the nation's total installed capacity of electricity generation in 2011. To provide a comprehensive picture of the development of hydropower in China and its potential environmental impacts, this study calculates the ecological footprint and greenhouse gas emission reduction of hydropower development in China over the past 60 years. The ecological footprints include the energy ecological footprint and arable land occupation footprint. The energy ecological footprint is calculated in terms of the area of the land which would be used for reforestation in order to assimilate CQ emissions from fossil energy consumption for hydropower development. The arable land occupation footprint is calculated in terms of the area of the land to be inundated by hydropower development. The calculated energy ecological footprint was 502 422 ha in 2010 or about 0.3% of total arable land in China and the calculated inundated land was about 1.42×10 6 ha or about 1.2% of total arable land in China. The regional power grid baseline method was used to calculate the greenhouse gas emission reduction. Results indicated that CQ emission reduction from hydropower development was increasing rapidly since 1949 and reached 5.02×108 tons of COe emission in 2010, with an accumulative total of 6.221×109 tons of CQ emission during the period 1949-2010.展开更多
This paper highlights a reliable goaf gas capture system developed and used at Ravensworth Under-ground Mine since its trial in 2009. The method utilises horizontal holes drilled from underground sites and connected t...This paper highlights a reliable goaf gas capture system developed and used at Ravensworth Under-ground Mine since its trial in 2009. The method utilises horizontal holes drilled from underground sites and connected to an underground gas pipeline. This system incorporates a gas suction and flaring plant designed specifically for this method. The current method has captured effectively a total longwall, and adjacent goaf gas accounts for over 85%. The design of the holes drilled has been the success of the gas flow reliability. The flow is extraordinarily consistent and predictable. The management of the under-ground pipeline determines the overall reliability of flow. The design has resulted in Ravensworth Man-agement being confident to remove a gas bearing bleeder roadway and still manage the existing tailgate roadway for allowing access as required. The reduction of CO2 equivalent emissions recorded is approx-imately 0.35 ? 106 tons annually. This design has further improvements to be added to allow use at any other site with gas in the overlying strata.展开更多
To contribute to the reduction of methane emissions,using low-cost biochar as adsorbents for capturing and storing methane in oil and gas fields is investigated.This work presents results of methane adsorption on four...To contribute to the reduction of methane emissions,using low-cost biochar as adsorbents for capturing and storing methane in oil and gas fields is investigated.This work presents results of methane adsorption on four biochars made from forestry wastes in comparison with the results of three commercial activated carbons.Although the adsorption capacity of the biochars is lower by over 50%than that of the activated carbons,thelow-cost and potential environmental benefits provide the incentive to the investigation.Moreover,it is shown that biochar can store more methane than vessels of compressed gas up to the pressure of 75 bar,suggesting the possibility of avoiding high-pressure gas compression and heavy vessels for cost savings in oil and gas fields.The thermodynamic and kinetic behaviors of the adsorption are studied and implications for the targeted application are discussed.展开更多
Market-based emission trading schemes(ETSs) are widely used in the developed world to reduce greenhouse gas(GHG) emissions which are perceived as the source of global climate change. China, as the largest GHG emitter ...Market-based emission trading schemes(ETSs) are widely used in the developed world to reduce greenhouse gas(GHG) emissions which are perceived as the source of global climate change. China, as the largest GHG emitter in the world, is committed to introducing an ETS to reduce emissions. Here we reviewed existing ETSs and sustainable energy policies worldwide as well as China's pilot programs. These studies were conducted in order to propose recommendations for national initiatives and strategies to be implemented in China in relation to climate change adaptation and mitigation. It has been shown that setting emission caps in the context of a national emission intensity target is difficult. However, implementing reliable systems for measurement, reporting, and verification of emissions are essential. A two-level management system(by central and provincial governments) for carbon trading is beneficial to ensure uniform standards and compliance while maintaining flexibility. Persistent political support from, and effective coordination of, policies by the government are crucial. In addition, strengthening of institutional innovation, and the establishment of a national GHG emissions information system, are of equal importance. This vital information could provide a great opportunity for China to re-define its economic growth and take global leadership in combatting climate change.展开更多
INTRODUCTION Historical records have documented considerable changes to the global climate,with significant health,economic,and environmental consequences.Climate projections predict more intense hurricanes;increased ...INTRODUCTION Historical records have documented considerable changes to the global climate,with significant health,economic,and environmental consequences.Climate projections predict more intense hurricanes;increased sea level rise;and more frequent and more intense natural disasters such as heat waves,heavy rainfall,and drought in the future(1;2).The coast along the Gulf of Mexico is particularly vulnerable to many of these environmental hazards and at particular risk when several strike simultaneously-such as a hurricane disrupting electricity transmission during a heat wave.展开更多
Through literature review method,this paper systematically analyzes and studies the general situation of China's domestic carbon market,market and technology system,pricing mechanism,trading status,carbon finance,...Through literature review method,this paper systematically analyzes and studies the general situation of China's domestic carbon market,market and technology system,pricing mechanism,trading status,carbon finance,feasible paths for marketing,and development prospects of China's carbon market.This study is of great significance for the systematic understanding of the development of China's carbon market,and also has important reference value for the realization of the national dual-carbon strategy in China.展开更多
This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from...This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.展开更多
Inventory analysis of greenhouse gas emission for large-scale biogas plants using carbon footprint method still needs to be improved.Based on the life cycle theory,the application of carbon footprint on four large-sca...Inventory analysis of greenhouse gas emission for large-scale biogas plants using carbon footprint method still needs to be improved.Based on the life cycle theory,the application of carbon footprint on four large-scale biogas plants was analyzed in this paper,which comprehensively considered project progresses of civil engineering construction,operation and comprehensive utilization of residues and slurry.Also the greenhouse gas emissions during the construction and waste removal stages were analyzed and estimated.The carbon footprint of those plants was analyzed in different types and scales.The results showed that the larger scale plant will produce relatively lower carbon footprint.The greenhouse gas emission of energy production,utilization during the period of anaerobic digestion accounted for more than 96%of the entire life cycle emission.The proportion of greenhouse gas emissions on equipment,demolition recycling and transportation phases was smaller,which was less than 1.5%and should be simplified in calculation.The greenhouse gas emission of building materials production can be ignored.展开更多
文摘Using the improved Energy-Environmental Version of the GTAP Model (GTAP-E) and the sixth version of emission database of non-CO2 greenhouse gases, we simulate the emission reduction potential of non-CO2 greenhouse gases in China and its policy implications. The results show that at present, China is a country with the greatest emission of non-CO2 greenhouse gases in the world, and the emission will account for about 20% of the world's total emission in 2020. The proportion of emission of non-CO2 greenhouse gases from the agricultural sector reaches 73%. In the next 10 years, the emission of non-CO2 gases from cattle and sheep, industry and service industry will experience the highest growth rate; the growth rate of emission from service industry will be higher than that of emission from industry, and the emission from service industry will exceed that from industry after 2010. China can implement emission reduction policy of non-CO2 greenhouse gases to ease the international pressure of CO2 emission reduction. Although the high carbon tax collected can reduce considerable non-CO2 emission, there is little difference in policy efficiency between high carbon tax and low carbon tax. So, in the implementation of emission reduction carbon tax policy of non-CO2 gases, it is necessary to control the carbon tax at a low level.
基金Funded by the National Research Foundation of Korea (NRF) of the Korea Government (MEST) (No.2011-0029867)
文摘The issues related to climate change such as depletion of energy resources and continuous high oil prices,global warming,and development of clean energy are adopted and discussed as a national agenda internationally.To cope with these domestic and foreign energy and environmental problems actively,government must prepare prudently in methodology of greenhouse gas reduction.Especially,as energy consumption of buildings accounts for 26 of national consumption,plans to reduce energy consumption of buildings are needed.Each region has a unique nature of energy consumption or consumption patterns,thus an appropriate policy or goal to reduce greenhouse gas (GHG) should be selected.For this,effects on the current policies for GHG as well as nature of energy consumption of buildings should be analyzed.We analyzed quantitatively the effectiveness of policies to reduce GHG emission in public buildings.
基金supported by Special Fund for Public Environmental Research"Study of the Characterization of Non-CO_2 Green House Gases Emissions and the Framework for Policy Control"(No.201009052)
文摘China is one of the major producers of chlorodifluoromethane(HCFC-22)in the world.A large amount of fluoroform(HFC-23)is emitted during the production of HCFC-22.Emission factors of HFC-23 were calculated in accordance with the monitoring reports of eleven HFC-23 clean development mechanism(CDM)projects in China and the HFC-23emissions in 2000–2010 as well as that in 2011–2020 were estimated and projected,respectively.It is expected that,by the end of 2020,emissions of HFC-23 in China will be as much as 230 Mt CO2-eq.If HCFC-22 producers voluntarily reduced HFC-23 emissions,it would contribute 3.2%–3.6%to the national CO2emission reduction target for 2020.
基金financially supported by the Beijing Natural Science Foundation(No.2204084)the National Science Foundation of China(Nos.52004015 and 51874014)+1 种基金the Major Scientific and Technological Innovation Project of Shandong Province,China(No.2019SDZY02)the Fundamental Research Funds for the Central Universities of China(No.FRF-TP-19-027A1)。
文摘Climate changes that occur as a result of global warming caused by increasing amounts of greenhouse gases(GHGs)released into the atmosphere are an alarming issue.Controlling greenhouse gas emissions is critically important for the current and future status of mining activities.The mining industry is one of the significant contributors of greenhouse gases.In essence,anthropogenic greenhouse gases are emitted directly during the actual mining and indirectly released by the energy-intensive activities associated with mining equipment,ore transport,and the processing industry.Therefore,we reviewed both direct and indirect GHG emissions to analyze how mining contributes to climate change.In addition,we showed how climate change impacts mineral production.This assessment was performed using a GHG inventory model for the gases released from mines undergoing different product life cycles.We also elucidate the key issues and various research outcomes to demonstrate how the mining industry and policymakers can mitigate GHG emission from the mining sector.The review concludes with an overview of GHG release reduction and mitigation strategies.
基金the Yunnan Ten Thousand Talents Plan Industrial Technology Champion Project Foundation of China(No.YNWR-CYJS-2018-015)Basic Research Project of Yunnan Province(No.2019FB080).
文摘With the fast development of the application of magnesium based alloys,the demand for primary magnesium is increasing dramatically all over the world.The Pidgeon process is the most widely used process for producing magnesium in China,but suffers from problems such as high energy,resource consumption and environmental pollution.While the process of vacuum carbothermal reduction to produce magnesium(VCTRM)has attracted more and more attention as its advantages,but it has not been well-practiced in industrial applications and there also is no comprehensive and quantitative analysis of this process.This study quantified the flows of resource and energy for the Pidgeon process and the VCTRM process,then compared and analyzed these two processes with each other from three aspects.The VCTRM process results in 63.14%and 69.16%lower of non-renewable mineral resources and energy consumptions when compared to the Pidgeon process,respectively.Moreover,the low energy consumption(2.675 tce vs.8.681 tce)and material to magnesium ratio(2.953:1 vs.6.429:1)of the VCTRM process,which lead to lower greenhouse gas(GHG)emissions(8.777 t vs.26.337 t)and solid waste generation(0.522 t vs.5.465 t)with a decrease of 66.67%and 90.45%,respectively.Results indicate that the VCTRM process is a more environmentally friendly process for magnesium production with high efficiency but low cost and low pollution,and it shows a good potential to be industrialized in the future after solving the bottleneck problem of the reverse reaction.
基金supported by the Ministry of Ecology and Environment of the People’s Republic of China(No.2110105)Guangdong Basic and Applied Basic Research Foundation(No.2019A1515011757)the Graduate Innovation Project of China University of Petroleum(East China)(No.YCX2021055)。
文摘Petrochemical enterprises have become a major source of global greenhouse gas(GHG)emissions.Yet,due to the unavailability of basic data,there is still a lack of case studies to quantify GHG emissions and provide petrochemical enterprises with guidelines for implementing energy conservation and emission reduction strategies.Therefore,this study conducted a life cycle assessment(LCA)analysis to estimate the GHG emissions of four typical petrochemical enterprises in China,using first-hand data,to determine possible emission reduction measures.The analytical data revealed that Dushanzi Petrochemical(DSP)has the highest GHG emission intensity(1.17 tons CO_(2)e/ton),followed by Urumqi Petrochemical(UP)(1.08 tons CO_(2)e/ton),Dalian Petrochemical(DLP)(average 0.58 tons CO_(2)e/ton)and Karamay Petrochemical(KP)(average 0.50 tons CO_(2)e/ton)over the whole life cycle.At the same time,GHG emissions during fossil fuel combustion were the largest contributor to the whole life cycle,accounting for about 77.31%–94.27% of the total emissions.In the fossil-fuel combustion phase,DSP had the highest unit GHG emissions(1.20 tons CO_(2)e),followed by UP(0.89 tons CO_(2)e).In the industrial production phase,DLP had the highest unit GHG emissions(average 0.13 tons CO_(2)e/ton),followed by UP(0.10 tons CO_(2)e/ton).During the torch burning phase,torch burning under accident conditions was the main source of GHG emissions.It is worth noting that the CO_(2) recovery stage has"negative value,"indicating that it will bring some environmental benefits.Further scenario analysis shows that effective policies and advanced technologies can further reduce GHG emissions.
基金the Key Project for the Strategic Science Plan in Institute of Geographic Sciences and Natural Resources Research,Chinese Academy of Sciences(No:2012ZD007)National Natural Science Foundation of China(No.41371486)
文摘Hydropower, next to coal, is the second most important source of electric power supply in China. It amounted to 20.4% of the nation's total installed capacity of electricity generation in 2011. To provide a comprehensive picture of the development of hydropower in China and its potential environmental impacts, this study calculates the ecological footprint and greenhouse gas emission reduction of hydropower development in China over the past 60 years. The ecological footprints include the energy ecological footprint and arable land occupation footprint. The energy ecological footprint is calculated in terms of the area of the land which would be used for reforestation in order to assimilate CQ emissions from fossil energy consumption for hydropower development. The arable land occupation footprint is calculated in terms of the area of the land to be inundated by hydropower development. The calculated energy ecological footprint was 502 422 ha in 2010 or about 0.3% of total arable land in China and the calculated inundated land was about 1.42×10 6 ha or about 1.2% of total arable land in China. The regional power grid baseline method was used to calculate the greenhouse gas emission reduction. Results indicated that CQ emission reduction from hydropower development was increasing rapidly since 1949 and reached 5.02×108 tons of COe emission in 2010, with an accumulative total of 6.221×109 tons of CQ emission during the period 1949-2010.
文摘This paper highlights a reliable goaf gas capture system developed and used at Ravensworth Under-ground Mine since its trial in 2009. The method utilises horizontal holes drilled from underground sites and connected to an underground gas pipeline. This system incorporates a gas suction and flaring plant designed specifically for this method. The current method has captured effectively a total longwall, and adjacent goaf gas accounts for over 85%. The design of the holes drilled has been the success of the gas flow reliability. The flow is extraordinarily consistent and predictable. The management of the under-ground pipeline determines the overall reliability of flow. The design has resulted in Ravensworth Man-agement being confident to remove a gas bearing bleeder roadway and still manage the existing tailgate roadway for allowing access as required. The reduction of CO2 equivalent emissions recorded is approx-imately 0.35 ? 106 tons annually. This design has further improvements to be added to allow use at any other site with gas in the overlying strata.
基金Program of Energy Research Development of Canada.
文摘To contribute to the reduction of methane emissions,using low-cost biochar as adsorbents for capturing and storing methane in oil and gas fields is investigated.This work presents results of methane adsorption on four biochars made from forestry wastes in comparison with the results of three commercial activated carbons.Although the adsorption capacity of the biochars is lower by over 50%than that of the activated carbons,thelow-cost and potential environmental benefits provide the incentive to the investigation.Moreover,it is shown that biochar can store more methane than vessels of compressed gas up to the pressure of 75 bar,suggesting the possibility of avoiding high-pressure gas compression and heavy vessels for cost savings in oil and gas fields.The thermodynamic and kinetic behaviors of the adsorption are studied and implications for the targeted application are discussed.
基金Under the auspices of the National Key Research & Development Program of China(No.2017YFA0604700)
文摘Market-based emission trading schemes(ETSs) are widely used in the developed world to reduce greenhouse gas(GHG) emissions which are perceived as the source of global climate change. China, as the largest GHG emitter in the world, is committed to introducing an ETS to reduce emissions. Here we reviewed existing ETSs and sustainable energy policies worldwide as well as China's pilot programs. These studies were conducted in order to propose recommendations for national initiatives and strategies to be implemented in China in relation to climate change adaptation and mitigation. It has been shown that setting emission caps in the context of a national emission intensity target is difficult. However, implementing reliable systems for measurement, reporting, and verification of emissions are essential. A two-level management system(by central and provincial governments) for carbon trading is beneficial to ensure uniform standards and compliance while maintaining flexibility. Persistent political support from, and effective coordination of, policies by the government are crucial. In addition, strengthening of institutional innovation, and the establishment of a national GHG emissions information system, are of equal importance. This vital information could provide a great opportunity for China to re-define its economic growth and take global leadership in combatting climate change.
文摘INTRODUCTION Historical records have documented considerable changes to the global climate,with significant health,economic,and environmental consequences.Climate projections predict more intense hurricanes;increased sea level rise;and more frequent and more intense natural disasters such as heat waves,heavy rainfall,and drought in the future(1;2).The coast along the Gulf of Mexico is particularly vulnerable to many of these environmental hazards and at particular risk when several strike simultaneously-such as a hurricane disrupting electricity transmission during a heat wave.
基金Supported by Project of National Natural Science Foundation of China(72173011):Quantitative Development and Coupling Optimization of Multi-objective Benefits of Forestry Carbon Neutrality.
文摘Through literature review method,this paper systematically analyzes and studies the general situation of China's domestic carbon market,market and technology system,pricing mechanism,trading status,carbon finance,feasible paths for marketing,and development prospects of China's carbon market.This study is of great significance for the systematic understanding of the development of China's carbon market,and also has important reference value for the realization of the national dual-carbon strategy in China.
文摘This paper reaches a recommendation for the 10-year e-bus transition roadmap for New York City. The lifecycle model of emission reduction demonstrates the ecological and financial impacts of a complete transition from the current diesel bus fleet to an all-electric bus fleet in New York City by 2033. This study focuses on the NOx pollution, which is the highest among all major cities by Environmental Protection Agency (EPA) and greenhouse gases (GHG) with annual emissions of over five million tons. Our model predicts that switching to an all-electric bus fleet will cut GHG emissions by over 390,000 tons and NOx emissions by over 1300 tons annually, in addition to other pollutants such as VOCs and PM 2.5. yielding an annual economic benefit of over 75.94 million USD. This aligns with the city mayor office’s initiative of achieving total carbon neutrality. We further model an optimized transition roadmap that balances ecological and long-term benefits against the costs of the transition, emphasizing feasibility and alignment with the natural replacement cycle of existing buses, ensuring a steady budgeting pattern to minimize interruptions and resistance. Finally, we advocate for collaboration between government agencies, public transportation authorities, and private sectors, including electric buses and charging facility manufacturers, which is essential for fostering innovation and reducing the costs associated with the transition to e-buses.
基金China National‘The Twelfth Five-Year Plan’for Science&Technology Supporting Project(Grant No.2012BAD47B03)Key Project for Agriculture Transformation of Scientific and Technological Achievements from the Ministry of Science and Technology of China(No.2014GB2A400088,“Technical Transformation and Demonstration Project of High Efficiency Anaerobic Biogas Production in Breeding Farm of Dry Dejecta Collection Mode”)and Beijing Municipal Key Discipline of Biomass Engineering.
文摘Inventory analysis of greenhouse gas emission for large-scale biogas plants using carbon footprint method still needs to be improved.Based on the life cycle theory,the application of carbon footprint on four large-scale biogas plants was analyzed in this paper,which comprehensively considered project progresses of civil engineering construction,operation and comprehensive utilization of residues and slurry.Also the greenhouse gas emissions during the construction and waste removal stages were analyzed and estimated.The carbon footprint of those plants was analyzed in different types and scales.The results showed that the larger scale plant will produce relatively lower carbon footprint.The greenhouse gas emission of energy production,utilization during the period of anaerobic digestion accounted for more than 96%of the entire life cycle emission.The proportion of greenhouse gas emissions on equipment,demolition recycling and transportation phases was smaller,which was less than 1.5%and should be simplified in calculation.The greenhouse gas emission of building materials production can be ignored.