Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spec...Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spectroscopy(UV–Vis), Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction(XRD), Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). Ni Gs were used as adsorbent for the removal of dyes such as crystal violet(CV), eosin Y(EY), orange II(OR) and anionic pollutant nitrate(NO3-), sulfate(SO42-) from aqueous solution. Adsorption capacity of Ni Gs was examined in batch modes at different p H, contact time, Ni G dosage, initial dye and pollutant concentration. The adsorption process was p H dependent and the adsorption capacity increased with increase in contact time and with that of Ni G dosage, whereas the adsorption capacity decreased at higher concentrations of dyes and pollutants. Maximum percentage removal of dyes and pollutants were observed at 40, 20,30, 10 and 10 mg·L-1initial concentration of CV, EY, OR, NO3-and SO42-respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g-1at p H 8, 3, 3, 7and 7 for CV, EY, OR, NO3-and SO42-respectively. The higher coef ficients of correlation in Langmuir isotherm suggested monolayer adsorption. The mean energies(E), 2.23, 3.53, 2.50, 5.00 and 3.16 k J·mol-1for CV, EY, OR, NO3-and SO42-respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsorbate onto Ni Gs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for all dyes and pollutants. Ni Gs were found to be an effective adsorbent for the removal of dyes and pollutants from aqueous solution and can be applied to treat textile and tannery ef fluents.展开更多
Al-doped carbon nanotubes(Al-doped CNTs) were prepared as a multifunctional integrated material of adsorbent and coagulant aid for organic pollutant removal from aqueous solution. It was observed that aluminum speci...Al-doped carbon nanotubes(Al-doped CNTs) were prepared as a multifunctional integrated material of adsorbent and coagulant aid for organic pollutant removal from aqueous solution. It was observed that aluminum species were dispersed homogeneously on the surface of CNTs, and mainly anchored onto defect structures of the CNTs. The introduction of aluminium efficiently improved adsorption ability for methyl orange(MO) onto the CNTs,and maximum adsorption capacity calculated from the Langmuir isotherm model can reach 69.7 mg/g. The MO adsorption kinetics can be better described by the pseudo-second-order and pore diffusion kinetic models, and the diffusion of MO anions into pores of the Al-doped CNT adsorbent should be the rate-determining step.Thermodynamic analyses indicated that the adsorption of MO onto Al-CNTs-2.0 was endothermic and spontaneous. Moreover, adsorption capacity for MO on the Al-doped CNTs was evidently dependent on the CNT dose, solution p H and adsorbent dose. From the perspective of low-cost and multifunctional, suspension obtained during the Al-doped CNT adsorbent preparation, was tested as coagulant to remove humic acid(HA). A significant observation is that the suspension exhibited an excellent coagulation performance for HA,because abundant aluminous polymer and Al-doped CNTs existed in the suspension.展开更多
Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution...Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution.There is a need for green and sustainable solutions to remove air pollutants,as opposed to conventional techniques which can be expensive,consume additional energy and generate further waste.We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces,to remove CO_2,and undesired organic air pollutants using natural particles,while generating oxygen.This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO_2 with a conversion rate of approximately 4%CO_2 per hour,generating a steady supply of oxygen(6 mmol/hr),while nanoparticles effectively remove several undesired organic by-products.We also showed algal waste of the bioreactor can be used for mercury remediation.We estimated the potential CO_2 emissions that could be captured from our new method for three industrial cases in which,coal,oil and natural gas were used.With a 30% carbon capture system,the reduction of CO_2 was estimated to decrease by about 420,000,320,000 and 240,000 metric tonnes,respectively for a typical 500 MW power plant.The cost analysis we conducted showed potential to scale-up,and the entire system is recyclable and sustainable.We further discuss the implications of usage of this complete system,or as individual units,that could provide a hybrid option to existing industrial setups.展开更多
In recent years,since water pollution has aroused great public concern,various carbon materials have already been widely applied for water treatment.In this respect,tremendous effort has been made to provide different...In recent years,since water pollution has aroused great public concern,various carbon materials have already been widely applied for water treatment.In this respect,tremendous effort has been made to provide different synthesis methods of carbon materials.Among all carbon materials,metal-organic framework(MOF)derived carbon has always been favored as it possesses several appealing merits such as high specific surface area,large pore volume,and outstanding chemical stability.This review presents the latest development of MOFs as templates and precursors for the fabrication of various carbon materials,including porous carbon,nanocarbon,and graphene,which are pyrolyzed at different temperatures.The article also emphasizes on their future trends and perspectives on the application of water treatment.展开更多
Graphene is a two-dimensional nanomaterial with huge surface area,high carrier mobility and high mechanical strength.Because of its great potential in nanotechnology and environmental protection,it has attracted much ...Graphene is a two-dimensional nanomaterial with huge surface area,high carrier mobility and high mechanical strength.Because of its great potential in nanotechnology and environmental protection,it has attracted much attention in environmental and energy fields since its discovery in 2004.Although graphene is a star material,many reviews have introduced its use in terms of energy,the research progress in the field of environment,especially water pollution control,has been rarely reported.Here,we review exhaustively the research progress of graphene-based materials in environmental pollution remediation in the past ten years.Firstly,the advantages and classification of graphene were introduced.Secondly,the research progress and main achievements of graphene and its composites in the fields of photocatalytic degradation,pollutant adsorption and water treatment were emphatically described,and the mechanism of action in the above fields was summarized.Finally,we discuss the problems existing in the preparation and summarize the application of graphene in the environment.展开更多
Hierarchical CuO-ZnO/SiO_(2)(CZS)nanofibrous membranes are designed and fabricated to remove Congo red and 4-nitro-phenol two common small molecular pollutants in water.The electrospun SiO_(2) fibrous membrane is serv...Hierarchical CuO-ZnO/SiO_(2)(CZS)nanofibrous membranes are designed and fabricated to remove Congo red and 4-nitro-phenol two common small molecular pollutants in water.The electrospun SiO_(2) fibrous membrane is serves as the substrate for hydrothermal depositing CuO-ZnO nanosheets.The CZS nanofibrous membrane shows good adsorption characteristics for Congo red due to the hierarchical morphology and the adsorption kinetics where isotherm follows the pseudo-second-order model and Langmuir model,respectively.The maximum adsorption capacity for Congo red is 141.8 mg/g.Moreover,the membrane exhibits excellent catalytic reduction activity for 4-nitrophenol under mild conditions and over 96%of the pollut-ants are degraded within 90 s.The CZS nanofibrous membrane has promising prospects in applications in water treatment and environmental protection because of the good flexibility,easy fabrication,excellent adsorption,and catalytic activity.展开更多
文摘Nickel nanoparticles as an eco-friendly adsorbent was biosynthesized using Ocimum sanctum leaf extract. The physiochemical properties of green synthesized nickel nanoparticles(Ni Gs) were characterized by UV–Vis spectroscopy(UV–Vis), Fourier Transform Infrared Spectroscopy(FTIR), X-ray diffraction(XRD), Scanning Electron Microscope(SEM) and Transmission Electron Microscope(TEM). Ni Gs were used as adsorbent for the removal of dyes such as crystal violet(CV), eosin Y(EY), orange II(OR) and anionic pollutant nitrate(NO3-), sulfate(SO42-) from aqueous solution. Adsorption capacity of Ni Gs was examined in batch modes at different p H, contact time, Ni G dosage, initial dye and pollutant concentration. The adsorption process was p H dependent and the adsorption capacity increased with increase in contact time and with that of Ni G dosage, whereas the adsorption capacity decreased at higher concentrations of dyes and pollutants. Maximum percentage removal of dyes and pollutants were observed at 40, 20,30, 10 and 10 mg·L-1initial concentration of CV, EY, OR, NO3-and SO42-respectively. The maximum adsorption capacities in Langmuir isotherm were found to be 0.454, 0.615, 0.273, 0.795 and 0.645 mg·g-1at p H 8, 3, 3, 7and 7 for CV, EY, OR, NO3-and SO42-respectively. The higher coef ficients of correlation in Langmuir isotherm suggested monolayer adsorption. The mean energies(E), 2.23, 3.53, 2.50, 5.00 and 3.16 k J·mol-1for CV, EY, OR, NO3-and SO42-respectively, calculated from the Dubinin–Radushkevich isotherm showed physical adsorption of adsorbate onto Ni Gs. Adsorption kinetics data was better fitted to pseudo-second-order kinetics with R2 N 0.870 for all dyes and pollutants. Ni Gs were found to be an effective adsorbent for the removal of dyes and pollutants from aqueous solution and can be applied to treat textile and tannery ef fluents.
基金supported by the National Natural Science Foundation of China(No.21407152)
文摘Al-doped carbon nanotubes(Al-doped CNTs) were prepared as a multifunctional integrated material of adsorbent and coagulant aid for organic pollutant removal from aqueous solution. It was observed that aluminum species were dispersed homogeneously on the surface of CNTs, and mainly anchored onto defect structures of the CNTs. The introduction of aluminium efficiently improved adsorption ability for methyl orange(MO) onto the CNTs,and maximum adsorption capacity calculated from the Langmuir isotherm model can reach 69.7 mg/g. The MO adsorption kinetics can be better described by the pseudo-second-order and pore diffusion kinetic models, and the diffusion of MO anions into pores of the Al-doped CNT adsorbent should be the rate-determining step.Thermodynamic analyses indicated that the adsorption of MO onto Al-CNTs-2.0 was endothermic and spontaneous. Moreover, adsorption capacity for MO on the Al-doped CNTs was evidently dependent on the CNT dose, solution p H and adsorbent dose. From the perspective of low-cost and multifunctional, suspension obtained during the Al-doped CNT adsorbent preparation, was tested as coagulant to remove humic acid(HA). A significant observation is that the suspension exhibited an excellent coagulation performance for HA,because abundant aluminous polymer and Al-doped CNTs existed in the suspension.
基金supported by Natural Sciences and Engineering Research Council of Canada(NSERC)-NSERC CREATE Mine of Knowledge,FRQNT(Fonds de recherche du Québec-Nature et Technologies),and Environment Canada
文摘Fossil fuel combustion and many industrial processes generate gaseous emissions that contain a number of toxic organic pollutants and carbon dioxide(CO_2) which contribute to climate change and atmospheric pollution.There is a need for green and sustainable solutions to remove air pollutants,as opposed to conventional techniques which can be expensive,consume additional energy and generate further waste.We developed a novel integrated bioreactor combined with recyclable iron oxide nano/micro-particle adsorption interfaces,to remove CO_2,and undesired organic air pollutants using natural particles,while generating oxygen.This semi-continuous bench-scale photo-bioreactor was shown to successfully clean up simulated emission streams of up to 45% CO_2 with a conversion rate of approximately 4%CO_2 per hour,generating a steady supply of oxygen(6 mmol/hr),while nanoparticles effectively remove several undesired organic by-products.We also showed algal waste of the bioreactor can be used for mercury remediation.We estimated the potential CO_2 emissions that could be captured from our new method for three industrial cases in which,coal,oil and natural gas were used.With a 30% carbon capture system,the reduction of CO_2 was estimated to decrease by about 420,000,320,000 and 240,000 metric tonnes,respectively for a typical 500 MW power plant.The cost analysis we conducted showed potential to scale-up,and the entire system is recyclable and sustainable.We further discuss the implications of usage of this complete system,or as individual units,that could provide a hybrid option to existing industrial setups.
基金the National Natural Science Foundation of China(Nos.U1904215 and 21875207)the Natural Science Foundation of Jiangsu Province(No.BK20200044)Changjiang scholars program of the Ministry of Education(No.Q2018270).
文摘In recent years,since water pollution has aroused great public concern,various carbon materials have already been widely applied for water treatment.In this respect,tremendous effort has been made to provide different synthesis methods of carbon materials.Among all carbon materials,metal-organic framework(MOF)derived carbon has always been favored as it possesses several appealing merits such as high specific surface area,large pore volume,and outstanding chemical stability.This review presents the latest development of MOFs as templates and precursors for the fabrication of various carbon materials,including porous carbon,nanocarbon,and graphene,which are pyrolyzed at different temperatures.The article also emphasizes on their future trends and perspectives on the application of water treatment.
基金supported by the State Key Research Development Program of China(No.2016YFA0204200)National Natural Science Foundation of China(Nos.21822603,21811540394,5171101651,21677048,21773062,21577036)+1 种基金Shanghai Pujiang Program(No.17PJD011)the Fundamental Research Funds for the Central Universities(No.22A201514021)。
文摘Graphene is a two-dimensional nanomaterial with huge surface area,high carrier mobility and high mechanical strength.Because of its great potential in nanotechnology and environmental protection,it has attracted much attention in environmental and energy fields since its discovery in 2004.Although graphene is a star material,many reviews have introduced its use in terms of energy,the research progress in the field of environment,especially water pollution control,has been rarely reported.Here,we review exhaustively the research progress of graphene-based materials in environmental pollution remediation in the past ten years.Firstly,the advantages and classification of graphene were introduced.Secondly,the research progress and main achievements of graphene and its composites in the fields of photocatalytic degradation,pollutant adsorption and water treatment were emphatically described,and the mechanism of action in the above fields was summarized.Finally,we discuss the problems existing in the preparation and summarize the application of graphene in the environment.
基金supported by National Natural Science Foundation of China(Grant number 51903044)the Fundamental Research Funds for the Central Universities(Grant number 2232020D-03).
文摘Hierarchical CuO-ZnO/SiO_(2)(CZS)nanofibrous membranes are designed and fabricated to remove Congo red and 4-nitro-phenol two common small molecular pollutants in water.The electrospun SiO_(2) fibrous membrane is serves as the substrate for hydrothermal depositing CuO-ZnO nanosheets.The CZS nanofibrous membrane shows good adsorption characteristics for Congo red due to the hierarchical morphology and the adsorption kinetics where isotherm follows the pseudo-second-order model and Langmuir model,respectively.The maximum adsorption capacity for Congo red is 141.8 mg/g.Moreover,the membrane exhibits excellent catalytic reduction activity for 4-nitrophenol under mild conditions and over 96%of the pollut-ants are degraded within 90 s.The CZS nanofibrous membrane has promising prospects in applications in water treatment and environmental protection because of the good flexibility,easy fabrication,excellent adsorption,and catalytic activity.