● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organicsfrom power plants is neither a main source of water pollution nor an emphasis of pollution control.● The no...● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organicsfrom power plants is neither a main source of water pollution nor an emphasis of pollution control.● The normal operation of FGD facilities is the key to fulfill the mission of SO2 emission reduction.● The control of SO2 emission should not be imposed uniformly on all power plants nationwide.● It is difficult to promote the emission trading of SO2 institutionally.● The active policy of levying for SO2 emission starting from zero emission and using levies for SO2 control isunreasonable. It should be reformed as levying only for over-limit emission, and not levying for emissionsbelow limit or levying indicatively.● Environmental regulations on SO2 control should make differences depending on environmental function ofzones, time period of generating units installed and manner of emissions.展开更多
The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and be...The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and between a bio-rack system and control system was conducted on a small-scale (500 mm length × 400 mm width × 400 mm height) to evaluate the decontamination effects of four different wetland plants.There was generally a significant difference in the removal of total nitrogen (TN),ammonia nitrogen (NH 3-N) and total phosphorus (TP),but no significant difference in the removal of permanganate index (COD Mn) between the bio-rack wetland and control system.Bio-rack wetland planted with Thalia dealbata had higher nutrient removal rates than wetlands planted with other species.Plant fine-root (root diameter 3 mm) biomass rather than total plant biomass was related to nutrient removal efficiency.The study suggested that the nutrient removal rates are influenced by plant species,and high fine-root biomass is an important factor in selecting highly effective wetland plants for a bio-rack system.According to the mass balance,the TN and TP removal were in the range of 61.03-73.27 g/m^2 and 4.14-5.20 g/m^2 in four bio-rack wetlands during the whole operational period.The N and P removal by plant uptake constituted 34.9%-43.81% of the mass N removal and 62.05%-74.81% of the mass P removal.The study showed that the nitrification/denitrification process and plant uptake process are major removal pathways for TN,while plant uptake is an effective removal pathway for TP.展开更多
Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control po...Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the llth Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO42-) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NOx) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NOx emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NOx emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3-), 1-hr maxima ozone (03) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%--4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3-, 1-hr maxima 03 concentrations and total nitrogen deposition by 2%-4%, 1%-%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control.展开更多
文摘● The demand for organics reduction in power industry needs to be analyzed. Generally speaking, the organicsfrom power plants is neither a main source of water pollution nor an emphasis of pollution control.● The normal operation of FGD facilities is the key to fulfill the mission of SO2 emission reduction.● The control of SO2 emission should not be imposed uniformly on all power plants nationwide.● It is difficult to promote the emission trading of SO2 institutionally.● The active policy of levying for SO2 emission starting from zero emission and using levies for SO2 control isunreasonable. It should be reformed as levying only for over-limit emission, and not levying for emissionsbelow limit or levying indicatively.● Environmental regulations on SO2 control should make differences depending on environmental function ofzones, time period of generating units installed and manner of emissions.
基金the financial support of the National water pollution control and management technology major project (No. 2008ZX07101)
文摘The bio-rack is a new approach for treating low-concentration polluted river water in wetland systems.A comparative study of the efficiency of contaminant removal between four plant species in bio-rack wetlands and between a bio-rack system and control system was conducted on a small-scale (500 mm length × 400 mm width × 400 mm height) to evaluate the decontamination effects of four different wetland plants.There was generally a significant difference in the removal of total nitrogen (TN),ammonia nitrogen (NH 3-N) and total phosphorus (TP),but no significant difference in the removal of permanganate index (COD Mn) between the bio-rack wetland and control system.Bio-rack wetland planted with Thalia dealbata had higher nutrient removal rates than wetlands planted with other species.Plant fine-root (root diameter 3 mm) biomass rather than total plant biomass was related to nutrient removal efficiency.The study suggested that the nutrient removal rates are influenced by plant species,and high fine-root biomass is an important factor in selecting highly effective wetland plants for a bio-rack system.According to the mass balance,the TN and TP removal were in the range of 61.03-73.27 g/m^2 and 4.14-5.20 g/m^2 in four bio-rack wetlands during the whole operational period.The N and P removal by plant uptake constituted 34.9%-43.81% of the mass N removal and 62.05%-74.81% of the mass P removal.The study showed that the nitrification/denitrification process and plant uptake process are major removal pathways for TN,while plant uptake is an effective removal pathway for TP.
基金supported by the Science Fund for Creative Research Groups of the Natural Science Foundation of China (No. 21221004)the Special Fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (No. 12L05ESPC)+1 种基金the MEP’s Special Funds for Research on Public Welfares (No. 201309009, 2011467003)supported by the Program for New Century Excellent Talents in University (No. NCET-10-0532) and the China Scholarship Council
文摘Understanding the effectiveness of national air pollution controls is important for control policy design to improve the future air quality in China. This study evaluated the effectiveness of major national control policies implemented recently in China through a modeling analysis. The sulfur dioxide (SO2) control policy during the llth Five Year Plan period (2006-2010) had succeeded in reducing the national SO2 emission in 2010 by 14% from its 2005 level, which correspondingly reduced ambient SO2 and sulfate (SO42-) concentrations by 13%-15% and 8%-10% respectively over east China. The nitrogen oxides (NOx) control policy during the 12th Five Year Plan period (2011-2015) targets the reduction of the national NOx emission in 2015 by 10% on the basis of 2010. The simulation results suggest that such a reduction in NOx emission will reduce the ambient nitrogen dioxide (NO2), nitrate (NO3-), 1-hr maxima ozone (03) concentrations and total nitrogen deposition by 8%, 3%-14%, 2% and 2%--4%, respectively over east China. The application of new emission standards for power plants will further reduce the NO2, NO3-, 1-hr maxima 03 concentrations and total nitrogen deposition by 2%-4%, 1%-%, 0-2% and 1%-2%, respectively. Sensitivity analysis was conducted to evaluate the inter-provincial impacts of emission reduction in Beijing-Tianjin-Hebei and the Yangtze River Delta, which indicated the need to implement joint regional air pollution control.