Zinc ions (Zn2+), known to be a novel intracellular second messenger related to various biological functions, have been delivered inside cells. For the intracellular Zn2+ delivery, Zn2+ has been chelated to carboxymet...Zinc ions (Zn2+), known to be a novel intracellular second messenger related to various biological functions, have been delivered inside cells. For the intracellular Zn2+ delivery, Zn2+ has been chelated to carboxymethyl poly(1-vinylimidazole) (CM-PVIm) by mixing zinc chloride (ZnCl2) or zinc acetate (Zn(OAc)2) with CM-PVIm. The resulting Zn2+-chelated CM-PVIm, that is, Zn2+/CM-PVIm complex by mixing ZnCl2 exhibited smaller particle size below 10 nm and possessed larger amount of Zn2+ ions, as compared to the Zn2+/CM-PVIm by mixing Zn(OAc)2. The both Zn2+/CM-PVIm complexes exhibited no significant cytotoxicity, leading to intracellular Zn2+ delivery. The Zn2+/CM-PVIm by mixing ZnCl2 delivered larger amount of intracellular Zn2+ ions than that by mixing Zn(OAc)2. These results suggest that the optimal Zn2+/CM-PVIm complex is a useful tool for intracellular Zn2+ delivery to control various biological functions.展开更多
While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410× 10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are ca...While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410× 10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are carried out in the presence of C_(60) using the W catalyst under the same conditions.The polymers are soluble in common organic solvents such as THF, chloroform, and toluene. Molecularstructures of the polymers are characterized by FT-IR, UV, NMR, GPC and XRD, and it is found that C_(60) iscopolymerized with PP. Thus C_(60) plays the dual roles of comonomer and cocatalyst in the polymerizationreaction. C_(60) contents of the copolymers can be easily changed by varying the C_(60) amounts in the feedmixtures. The copolymers effectively limit strong 532 nm laser pulses, whose limiting performance issuperior to that of parent C_(60).展开更多
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of t...Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.展开更多
Poly-α-olefin(PAO) synthetic oil is the base oil of high-quality lubricants, and has a huge market potential.We illustrate PAO synthesis by catalytic polymerization of 1-decene with a boron trifluoride(BF_3)/alcohol ...Poly-α-olefin(PAO) synthetic oil is the base oil of high-quality lubricants, and has a huge market potential.We illustrate PAO synthesis by catalytic polymerization of 1-decene with a boron trifluoride(BF_3)/alcohol system. Gas chromatography–mass spectrometry, proton nuclear magnetic resonance and ^(13) C nuclear magnetic resonance analysis confirmed dimer, trimer and tetramer structures of PAO. Each component contained branched chains with a 1,2 insertion of a head-to-tail link; a 2,1 insertion of a tail-to-tail link and a methyl-containing linked structure. At a low conversion rate, the reaction rate was related directly with the reaction temperature and the catalyst/1-decene concentration. An apparent kinetic equation for PAO formation was determined during 1-decene polymerization.展开更多
The highly conserved abundant nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) is activated by DNA damage. PARP-1 activation is associated in DNA repair, cell death and inflammation. Since oxidative stress ...The highly conserved abundant nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) is activated by DNA damage. PARP-1 activation is associated in DNA repair, cell death and inflammation. Since oxidative stress induced robust DNA damage and wide spread inflamma- tory responses are common pathologies of various CNS diseases, the attention towards PARP-1 as a therapeutic target has been amplifying. This review highlights the multiple roles of PARP- 1 in neurological diseases and po- tential of PARP- 1 inhibitors to enter clinical translation.展开更多
FTIR, UV-visible , fluorescence spectra and calculation of CPK model indicated that poly(1-naphthol) synthesized and assembled by horseradish peroxidase(HRP) in aqueous micelle was constructed with orderly helical co...FTIR, UV-visible , fluorescence spectra and calculation of CPK model indicated that poly(1-naphthol) synthesized and assembled by horseradish peroxidase(HRP) in aqueous micelle was constructed with orderly helical conformation, which was the lowest energy conformation of the polymer under this condition and resulted in an advanced c-conjugated system.展开更多
Crystallization in polymer systems actually is a process that transfers the entangled melts into a semi-crystalline layered structure. Whether or not a chain disentangles may result in different crystallization mechan...Crystallization in polymer systems actually is a process that transfers the entangled melts into a semi-crystalline layered structure. Whether or not a chain disentangles may result in different crystallization mechanism. When compared to the crystal thickness (d(c)), the volume occupied by the chain in the melts i.e., the radius of gyration (R-g), plays a very important role in polymer crystallization. When d(c) less than or equal to R-g, crystallization does not necessitate a chain disentangling. The entanglements are just shifted into the amorphous regions. However, as d(c)>R-g, i.e., as the crystal thickness gets larger than the radius of gyration of the chain in the melt, it becomes necessary for a chain to disentangle. Then a change of crystallization mechanism occurs. Such change has been experimentally observed in the crystallization of poly(I-butene). A change in the crystal morphologies from spherulite to quadrangle, is seen via PLM, as crystallization temperatures increase. Even more, such a change is molecular weight dependent, and shifts to lower temperature as molecular weight decreases. There exists a jump of crystal thickness and crystallinity associated with morphological change, as seen via SAXS. A change of crystallization kinetics and crystallinity is further evidenced via dilatometry. The unique feature of P1b crystallization has been discussed based on the radius of gyration of chain in the melt (R-g), and very good agreement is obtained.展开更多
Surface modification of poly [1-(trimethylsilyl)-1-propyne] (PTMSP) membranes bybromine vapor has been studied. It is shown that Br/C atomic ratio at the surfaces increased withthe time of bromination until about 60 m...Surface modification of poly [1-(trimethylsilyl)-1-propyne] (PTMSP) membranes bybromine vapor has been studied. It is shown that Br/C atomic ratio at the surfaces increased withthe time of bromination until about 60 min, then it reached a plateau. The results of XPS and IRstudies indicated that the addition of bromine to double bonds and the replacement of H on CH_3 bybromine had taken place so that a new peak at 286.0 eV (C--Br)in C_(1s) spectra and some newbands, e. g. at 1220 and 580cm^(-1) in IR spectra were formed. The fact,t Po_2, permeability ofoxygen, decreased and α_(O_2/N_2), separation factor of oxygen relative to nitrogen, increased withbromination time, shows that surface modification of PTMSP by bromine may be an efficient approach to prepare PTMSP membranes used for practical gas separations.展开更多
Poly (ADP-ribose) polymerase-1 (PARP-1) can exacerbate ischemic brain injury and lessen ischemic neuronal death, which may be associated with PARP-1 polymorphisms. The present study investigated human PARP-1 gene ...Poly (ADP-ribose) polymerase-1 (PARP-1) can exacerbate ischemic brain injury and lessen ischemic neuronal death, which may be associated with PARP-1 polymorphisms. The present study investigated human PARP-1 gene polymorphisms in various Chinese nationalities, the results of which could potentially help in the treatment and prevention of neurologic diseases. Genetic polymorphisms of seven exons in the PARP-1 gene, in 898 Chinese Han, Buyi, Shui, Miao, and Zhuang subjects, were investigated by PCR-single-strand conformation polymorphism. A single-strand conformation polymorphism variant in exons 12, 13, 16, and 17 of the PARP-1 gene was identified in 148 people, with two stationary bands showing three degenerative single strands. Results showed that the PARP-1 gene polymorphisms exist in various nationalities, and may act as a biomarker for susceptibility to disease.展开更多
Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the...Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.展开更多
A new monomer of 4, 4-biphenyl-bis[4-phthalazin-1(2H)-one] was synthesized from biphenyl and phthalic anhydride, and a novel copoly(aryl ether ketone) (PPEK) was synthesized from 2, 2-bis(4-hydroxyphenyl)-propane (BPA...A new monomer of 4, 4-biphenyl-bis[4-phthalazin-1(2H)-one] was synthesized from biphenyl and phthalic anhydride, and a novel copoly(aryl ether ketone) (PPEK) was synthesized from 2, 2-bis(4-hydroxyphenyl)-propane (BPA), 4, 4'-biphenyl-bis-[4-phthalazin-1(2H)-one], 4, 4- difluorodiphenylketone (DFK). The monomer and copolymer were characterized by FT-IR and 1H-NMR. DSC and TGA were used to the novel polymer.展开更多
In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-m...In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-methoxyphenol as starting material in the presence of potassium tert-butoxide (1M in THF). The product was further purified by multiple precipitations in different solvents such as methanol, tetrahydrofuran, isopropyl alcohol and hexane. The final product was dried to afford MO-p-PPV as a red solid. The resulting polymer was completely soluble in common organic solvents. The structure of monomer and optical properties of polymer were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The UV-vis spectrum showed absorption maxima for MO-p-PPV at 491 nm. Similarly, fluorescence spectrum showed λmax emission at 540 nm.展开更多
In this paper, the structure of 1-bromomethyl-7,7-dimethyl btcyclo[2.2.1]hept-2-yl acrylate has been studied by X-ray diffraction, and the relation between the molecular structure and the properties of polymerization ...In this paper, the structure of 1-bromomethyl-7,7-dimethyl btcyclo[2.2.1]hept-2-yl acrylate has been studied by X-ray diffraction, and the relation between the molecular structure and the properties of polymerization and its polymer have been discussed.展开更多
This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butyle...This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil展开更多
文摘Zinc ions (Zn2+), known to be a novel intracellular second messenger related to various biological functions, have been delivered inside cells. For the intracellular Zn2+ delivery, Zn2+ has been chelated to carboxymethyl poly(1-vinylimidazole) (CM-PVIm) by mixing zinc chloride (ZnCl2) or zinc acetate (Zn(OAc)2) with CM-PVIm. The resulting Zn2+-chelated CM-PVIm, that is, Zn2+/CM-PVIm complex by mixing ZnCl2 exhibited smaller particle size below 10 nm and possessed larger amount of Zn2+ ions, as compared to the Zn2+/CM-PVIm by mixing Zn(OAc)2. The both Zn2+/CM-PVIm complexes exhibited no significant cytotoxicity, leading to intracellular Zn2+ delivery. The Zn2+/CM-PVIm by mixing ZnCl2 delivered larger amount of intracellular Zn2+ ions than that by mixing Zn(OAc)2. These results suggest that the optimal Zn2+/CM-PVIm complex is a useful tool for intracellular Zn2+ delivery to control various biological functions.
基金This work was in part supported by the Hong Kong Research Grants Council(HKUST6062/98P and DAG96/97 SC11).
文摘While WCl_6-Ph_4Sn fails to polymerize 1-phenyl-1-propyne (PP) at room temperature, highmolecular weight (M_w up to 410× 10~3) polymers are obtained in high yields (up to 80%) when thepolymerizations of PP are carried out in the presence of C_(60) using the W catalyst under the same conditions.The polymers are soluble in common organic solvents such as THF, chloroform, and toluene. Molecularstructures of the polymers are characterized by FT-IR, UV, NMR, GPC and XRD, and it is found that C_(60) iscopolymerized with PP. Thus C_(60) plays the dual roles of comonomer and cocatalyst in the polymerizationreaction. C_(60) contents of the copolymers can be easily changed by varying the C_(60) amounts in the feedmixtures. The copolymers effectively limit strong 532 nm laser pulses, whose limiting performance issuperior to that of parent C_(60).
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59833120).
文摘Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.
基金supported by the Natural Science Foundation of China(21576048)the PetroChina Innovation Foundation(2014D-5006-0503)
文摘Poly-α-olefin(PAO) synthetic oil is the base oil of high-quality lubricants, and has a huge market potential.We illustrate PAO synthesis by catalytic polymerization of 1-decene with a boron trifluoride(BF_3)/alcohol system. Gas chromatography–mass spectrometry, proton nuclear magnetic resonance and ^(13) C nuclear magnetic resonance analysis confirmed dimer, trimer and tetramer structures of PAO. Each component contained branched chains with a 1,2 insertion of a head-to-tail link; a 2,1 insertion of a tail-to-tail link and a methyl-containing linked structure. At a low conversion rate, the reaction rate was related directly with the reaction temperature and the catalyst/1-decene concentration. An apparent kinetic equation for PAO formation was determined during 1-decene polymerization.
文摘The highly conserved abundant nuclear protein poly (ADP-ribose) polymerase-1 (PARP-1) is activated by DNA damage. PARP-1 activation is associated in DNA repair, cell death and inflammation. Since oxidative stress induced robust DNA damage and wide spread inflamma- tory responses are common pathologies of various CNS diseases, the attention towards PARP-1 as a therapeutic target has been amplifying. This review highlights the multiple roles of PARP- 1 in neurological diseases and po- tential of PARP- 1 inhibitors to enter clinical translation.
文摘FTIR, UV-visible , fluorescence spectra and calculation of CPK model indicated that poly(1-naphthol) synthesized and assembled by horseradish peroxidase(HRP) in aqueous micelle was constructed with orderly helical conformation, which was the lowest energy conformation of the polymer under this condition and resulted in an advanced c-conjugated system.
基金This work was supported by the Deutsche Forschungsgemeinschall and der Chemischen Industrierate, Alexander von Humboldt Stiffeng and the China National Distinguished Young Investigator Fund (No. 29925413).
文摘Crystallization in polymer systems actually is a process that transfers the entangled melts into a semi-crystalline layered structure. Whether or not a chain disentangles may result in different crystallization mechanism. When compared to the crystal thickness (d(c)), the volume occupied by the chain in the melts i.e., the radius of gyration (R-g), plays a very important role in polymer crystallization. When d(c) less than or equal to R-g, crystallization does not necessitate a chain disentangling. The entanglements are just shifted into the amorphous regions. However, as d(c)>R-g, i.e., as the crystal thickness gets larger than the radius of gyration of the chain in the melt, it becomes necessary for a chain to disentangle. Then a change of crystallization mechanism occurs. Such change has been experimentally observed in the crystallization of poly(I-butene). A change in the crystal morphologies from spherulite to quadrangle, is seen via PLM, as crystallization temperatures increase. Even more, such a change is molecular weight dependent, and shifts to lower temperature as molecular weight decreases. There exists a jump of crystal thickness and crystallinity associated with morphological change, as seen via SAXS. A change of crystallization kinetics and crystallinity is further evidenced via dilatometry. The unique feature of P1b crystallization has been discussed based on the radius of gyration of chain in the melt (R-g), and very good agreement is obtained.
基金The project is supported by the National Natural Science Foundation of China
文摘Surface modification of poly [1-(trimethylsilyl)-1-propyne] (PTMSP) membranes bybromine vapor has been studied. It is shown that Br/C atomic ratio at the surfaces increased withthe time of bromination until about 60 min, then it reached a plateau. The results of XPS and IRstudies indicated that the addition of bromine to double bonds and the replacement of H on CH_3 bybromine had taken place so that a new peak at 286.0 eV (C--Br)in C_(1s) spectra and some newbands, e. g. at 1220 and 580cm^(-1) in IR spectra were formed. The fact,t Po_2, permeability ofoxygen, decreased and α_(O_2/N_2), separation factor of oxygen relative to nitrogen, increased withbromination time, shows that surface modification of PTMSP by bromine may be an efficient approach to prepare PTMSP membranes used for practical gas separations.
基金the National Natural Science Foundation of China, No. 30972500the Natural Science Foundation of Guangdong Province, No. 7301507
文摘Poly (ADP-ribose) polymerase-1 (PARP-1) can exacerbate ischemic brain injury and lessen ischemic neuronal death, which may be associated with PARP-1 polymorphisms. The present study investigated human PARP-1 gene polymorphisms in various Chinese nationalities, the results of which could potentially help in the treatment and prevention of neurologic diseases. Genetic polymorphisms of seven exons in the PARP-1 gene, in 898 Chinese Han, Buyi, Shui, Miao, and Zhuang subjects, were investigated by PCR-single-strand conformation polymorphism. A single-strand conformation polymorphism variant in exons 12, 13, 16, and 17 of the PARP-1 gene was identified in 148 people, with two stationary bands showing three degenerative single strands. Results showed that the PARP-1 gene polymorphisms exist in various nationalities, and may act as a biomarker for susceptibility to disease.
文摘Experiments including C-13 spin-lattice relaxation, C-13 heteronuclear dipolar dephasing and H-1 spin diffusion are performed on poly (2,6-dimethyl-1,4-phenylene oxide) (PPO). The results show that the rotation of the methyl groups in solid PPO is partially restricted, which results in a surprisingly efficient spin diffusion between the aromatic proton and methyl proton characterized by a diffusion time of 150 mu s. The results also show that the aromatic ring in solid PPO is rigid and twisted, which causes all aromatic carbons to be chemically unequivalent.
基金This work is sponsored by the National Natural Science Foundation of China (No. 59473901).
文摘A new monomer of 4, 4-biphenyl-bis[4-phthalazin-1(2H)-one] was synthesized from biphenyl and phthalic anhydride, and a novel copoly(aryl ether ketone) (PPEK) was synthesized from 2, 2-bis(4-hydroxyphenyl)-propane (BPA), 4, 4'-biphenyl-bis-[4-phthalazin-1(2H)-one], 4, 4- difluorodiphenylketone (DFK). The monomer and copolymer were characterized by FT-IR and 1H-NMR. DSC and TGA were used to the novel polymer.
文摘In this study, the conjugated polymer, poly(1-methoxy-4-octyloxy)-para-phenylene vinylene (MO-p-PPV) was synthesized and characterized. MO-p-PPV was synthesized according to Gilch polymerization mechanism by using 4-methoxyphenol as starting material in the presence of potassium tert-butoxide (1M in THF). The product was further purified by multiple precipitations in different solvents such as methanol, tetrahydrofuran, isopropyl alcohol and hexane. The final product was dried to afford MO-p-PPV as a red solid. The resulting polymer was completely soluble in common organic solvents. The structure of monomer and optical properties of polymer were characterized by proton nuclear magnetic resonance (1H-NMR) spectroscopy, UV-vis spectroscopy, and fluorescence spectroscopy. The UV-vis spectrum showed absorption maxima for MO-p-PPV at 491 nm. Similarly, fluorescence spectrum showed λmax emission at 540 nm.
文摘In this paper, the structure of 1-bromomethyl-7,7-dimethyl btcyclo[2.2.1]hept-2-yl acrylate has been studied by X-ray diffraction, and the relation between the molecular structure and the properties of polymerization and its polymer have been discussed.
文摘This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil