Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV ...Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.展开更多
Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a custo...Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. .展开更多
Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and...Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and plentiful not only as natural gas, but also as biogas. Methanol can also maintain methanotrophic activity in some conditions. The methanotrophic strain Methylosinus trichosporium IMV3011 can accumulate PHB with methane and methanol in a brief nonsterile process. Liquid methanol (0.1%) was added to improve the oxidization of methane. The studies were carried out using shake flasks. Cultivation was performed in two stages: a continuous growth phase and a PHB accumulation phase under the conditions short of essential nutrients (ammonium, nitrate, phosphorus, copper, iron (Ⅲ), magnesium or ethylenediamine tetraacetate (EDTA)) in batch culture. It was found that the most suitable growth time for the cell is 144 h. Then an optimized culture condition for second stage was determined, in which the PHB concentration could be much increased to 0.6 g/L. In order to increase PHB content, citric acid was added as an inhibitor of tricarboxylic acid cycle (TCA). It was found that citric acid is favorable for the PHB accumulation, and the PHB yield was increased to 40% (w/w) from the initial yield of 12% (w/w) after nutrient deficiency cultivation. The PHB produced is of very high quality with molecular weight up to 1.5 × 10^6Da.展开更多
AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal ste...AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O2 (air) or 2% O2 (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS: Film thickness correlated directly with weight/volume PHBHHx (r2 = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values > 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O2 and 21% O2 respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O2. An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O2. Cell migration into films was not observed. CONCLUSION: This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair.展开更多
Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxyb...Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) film was irradiated by the low temperature atmospheric plasma and then coated by the silk fibroins (SF). After plasma treatment, the surface of PHBHHx film became rougher and more hydrophilic than that of original film. The experiment of PHBHHx flushed by phosphate buffer solution (PBS) proves that the coated SF shows stronger immobilization on the plasma-treated film than that on the untreated film. The cell viability assay demonstrates that SF-coated PHBHHx films treated by the plasma significantly supports the proliferation and growth of the human smooth muscle cells (HSMCs). Furthermore, the scanning electron microscopy and hemotoylin and eosin (HE) staining show that HSMCs formed a cell sub-monolayer and secreted a large amount of extracellular matrix (ECM) on the films after one week's culture. The silk fibroins modify the plasma-treated PHBHHx film, providing a material potentially applicable in the cardiovascular tissue engi-neering.展开更多
Porous poly(3 hydroxybutyrate)(PHB) membranes were prepared by microemulsion templates. The influence of microemulsion templates on pore size and porosity of the PHB membranes were studied. Preliminary studies showed...Porous poly(3 hydroxybutyrate)(PHB) membranes were prepared by microemulsion templates. The influence of microemulsion templates on pore size and porosity of the PHB membranes were studied. Preliminary studies showed that the pore size made by microemulsion templates were smaller and were estimated in the range of 100~500 nanometer. In this research, the ultraviolet/visible light spectrometer was applied in the investigation of H 2O/Span85 Tween60/chloroform reserve microemulsion. Surfactant content(P) and water content(R) were optimized. Furthermore, the effects of variation of P and R on the pore size and porosity of PHB films were discussed.展开更多
A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which wer...A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.展开更多
Mesenchymal stem cells(MSCs)are stromal multipotent stem cells that can differentiate into multiple cell types,including fibroblasts,osteoblasts,chondrocytes,adipocytes,and myoblasts,thus allowing them to contribute t...Mesenchymal stem cells(MSCs)are stromal multipotent stem cells that can differentiate into multiple cell types,including fibroblasts,osteoblasts,chondrocytes,adipocytes,and myoblasts,thus allowing them to contribute to the regeneration of various tissues,especially bone tissue.MSCs are now considered one of the most promising cell types in the field of tissue engineering.Traditional petri dish-based culture of MSCs generate heterogeneity,which leads to inconsistent efficacy of MSC applications.Biodegradable and biocompatible polymers,poly(3-hydroxyalkanoates)(PHAs),are actively used for the manufacture of scaffolds that serve as carriers for MSC growth.The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers,the 3D and surface microstructure of the scaffolds,and the biological activity of PHAs,which was discovered in a series of investigations.The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied.We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs,especially the most widespread representative poly(3-hydroxybutyrate)(PHB).This biopolymer is present in the bacteria of mammalian microbiota,whereas endogenous poly(3-hydroxybutyrate)is found in mammalian tissues.The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate)in bacteria and eukaryotes,including in humans,is discussed in this paper.展开更多
基金This work was financially supported by the Hong Kong Polytechnic University (Grant YD37)the Research Grant Council of the Hong Kong Special Administration Region, China (Nos. Polyu5272/01M, Polyu5257/02M, Polyu5403/03M)
文摘Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups.
文摘Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. .
基金New Century Excellent Talents in University of China(NCET-05-0358)the National Natural Science Foundation of China(20625308)
文摘Poly-3-hydroxybutyrate (PHB) can be produced by various species of bacteria. Among the possible carbon sources, both methane and methanol could be a suitable substrate for the production of PHB. Methane is cheap and plentiful not only as natural gas, but also as biogas. Methanol can also maintain methanotrophic activity in some conditions. The methanotrophic strain Methylosinus trichosporium IMV3011 can accumulate PHB with methane and methanol in a brief nonsterile process. Liquid methanol (0.1%) was added to improve the oxidization of methane. The studies were carried out using shake flasks. Cultivation was performed in two stages: a continuous growth phase and a PHB accumulation phase under the conditions short of essential nutrients (ammonium, nitrate, phosphorus, copper, iron (Ⅲ), magnesium or ethylenediamine tetraacetate (EDTA)) in batch culture. It was found that the most suitable growth time for the cell is 144 h. Then an optimized culture condition for second stage was determined, in which the PHB concentration could be much increased to 0.6 g/L. In order to increase PHB content, citric acid was added as an inhibitor of tricarboxylic acid cycle (TCA). It was found that citric acid is favorable for the PHB accumulation, and the PHB yield was increased to 40% (w/w) from the initial yield of 12% (w/w) after nutrient deficiency cultivation. The PHB produced is of very high quality with molecular weight up to 1.5 × 10^6Da.
基金Supported by EPSRC Doctoral Training Centre in Regenerative Medicine and the HYANJI Scaffold Project (European Commission Framework 7 program)
文摘AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O2 (air) or 2% O2 (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS: Film thickness correlated directly with weight/volume PHBHHx (r2 = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values > 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O2 and 21% O2 respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O2. An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O2. Cell migration into films was not observed. CONCLUSION: This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair.
文摘Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) film was irradiated by the low temperature atmospheric plasma and then coated by the silk fibroins (SF). After plasma treatment, the surface of PHBHHx film became rougher and more hydrophilic than that of original film. The experiment of PHBHHx flushed by phosphate buffer solution (PBS) proves that the coated SF shows stronger immobilization on the plasma-treated film than that on the untreated film. The cell viability assay demonstrates that SF-coated PHBHHx films treated by the plasma significantly supports the proliferation and growth of the human smooth muscle cells (HSMCs). Furthermore, the scanning electron microscopy and hemotoylin and eosin (HE) staining show that HSMCs formed a cell sub-monolayer and secreted a large amount of extracellular matrix (ECM) on the films after one week's culture. The silk fibroins modify the plasma-treated PHBHHx film, providing a material potentially applicable in the cardiovascular tissue engi-neering.
文摘Porous poly(3 hydroxybutyrate)(PHB) membranes were prepared by microemulsion templates. The influence of microemulsion templates on pore size and porosity of the PHB membranes were studied. Preliminary studies showed that the pore size made by microemulsion templates were smaller and were estimated in the range of 100~500 nanometer. In this research, the ultraviolet/visible light spectrometer was applied in the investigation of H 2O/Span85 Tween60/chloroform reserve microemulsion. Surfactant content(P) and water content(R) were optimized. Furthermore, the effects of variation of P and R on the pore size and porosity of PHB films were discussed.
文摘A novel kind of copolymer with ABA-type block structure was synthesized by anionic ring-opening polymerization of beta-butyrolactone (beta-BL) in the presence of a PEG-based dicarboxylates as macroinitiators which were prepared by the esterification of aliphatic cyclic anhydride and poly(ethylene glycol) (PEG) oligomers (M-n = 2000, 4000 and 6000) and conversion of potassium dicarboxylates. The resultant copolymers as well as the intermediates were characterized by IR, H-1-NMR and GPC.
基金Supported by Russian Science Foundation,No.17-74-20104
文摘Mesenchymal stem cells(MSCs)are stromal multipotent stem cells that can differentiate into multiple cell types,including fibroblasts,osteoblasts,chondrocytes,adipocytes,and myoblasts,thus allowing them to contribute to the regeneration of various tissues,especially bone tissue.MSCs are now considered one of the most promising cell types in the field of tissue engineering.Traditional petri dish-based culture of MSCs generate heterogeneity,which leads to inconsistent efficacy of MSC applications.Biodegradable and biocompatible polymers,poly(3-hydroxyalkanoates)(PHAs),are actively used for the manufacture of scaffolds that serve as carriers for MSC growth.The growth and differentiation of MSCs grown on PHA scaffolds depend on the physicochemical properties of the polymers,the 3D and surface microstructure of the scaffolds,and the biological activity of PHAs,which was discovered in a series of investigations.The mechanisms of the biological activity of PHAs in relation to MSCs remain insufficiently studied.We suggest that this effect on MSCs could be associated with the natural properties of bacteria-derived PHAs,especially the most widespread representative poly(3-hydroxybutyrate)(PHB).This biopolymer is present in the bacteria of mammalian microbiota,whereas endogenous poly(3-hydroxybutyrate)is found in mammalian tissues.The possible association of PHA effects on MSCs with various biological functions of poly(3-hydroxybutyrate)in bacteria and eukaryotes,including in humans,is discussed in this paper.