期刊文献+
共找到23,189篇文章
< 1 2 250 >
每页显示 20 50 100
A novel artificial nerve graft for repairing longdistance sciatic nerve defects:a self-assembling peptide nanofiber scaffold-containing poly (lactic-co-glycolic acid) conduit 被引量:5
1
作者 Xianghai Wang Mengjie Pan +7 位作者 Jinkun Wen Yinjuan Tang Audra D.Hamilton Yuanyuan Li Changhui Qian Zhongying Liu Wutian Wu Jiasong Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第24期2132-2141,共10页
In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-... In this study, we developed a novel artificial nerve graft termed self-assembling peptide nanofiber scaffold (SAPNS)-containing poly(lactic-co-glycolic acid) (PLGA) conduit (SPC) and used it to bridge a 10-mm-long sciatic nerve defect in the rat. Retrograde tracing, behavioral testing and histomorphometric analyses showed that compared with the empty PLGA conduit implantation group, the SPC implantation group had a larger number of growing and extending axons, a markedly increased diameter of regenerated axons and a greater thickness of the myelin sheath in the conduit. Furthermore, there was an increase in the size of the neuromuscular junction and myofiber diameter in the target muscle. These findings suggest that the novel artificial SPC nerve graft can promote axonal regeneration and remyelination in the transected peripheral nerve and can be used for repairing peripheral nerve injury. 展开更多
关键词 nerve regeneration peripheral nerve defect artificial nerve graft polylactic-co-glycolic acid) self-assembling peptide nanofiber scaffold REMYELINATION axon myelin neuromuscular junction NSFC grants neural regeneration
下载PDF
Dorsal root ganglion-derived Schwann cells combined with poly(lactic-co-glycolic acid)/chitosan conduits for the repair of sciatic nerve defects in rats 被引量:3
2
作者 Li Zhao Wei Qu +2 位作者 Yuxuan Wu Hao Ma Huajun Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第22期1961-1967,共7页
Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are compl... Schwann cells, nerve regeneration promoters in peripheral nerve tissue engineering, can be used to repair both the peripheral and central nervous systems. However, isolation and puriifcation of Schwann cells are complicated by contamination with ifbroblasts. Current reported measures are mainly limited by either high cost or complicated procedures with low cell yields or purity. In this study, we collected dorsal root ganglia from neonatal rats from which we obtained highly puriifed Schwann cells using serum-free melanocyte culture medium. The purity of Schwann cells (〉95%) using our method was higher than that using standard medium containing fetal bovine serum. The obtained Schwann cells were implanted into poly(lactic-co-glycolic acid)/chi-tosan conduits to repair 10-mm sciatic nerve defects in rats. Results showed that axonal diameter and area were signiifcantly increased and motor functions were obviously improved in the rat sciatic nerve tissue. Experimental ifndings suggest that serum-free melanocyte culture medium is conducive to purify Schwann cells and poly(lactic-co-glycolic acid)/chitosan nerve conduits combined with Schwann cells contribute to restore sciatic nerve defects. 展开更多
关键词 nerve regeneration Schwann cells dorsal root ganglia melanocyte medium FIBROBLASTS polylactic-co-glycolic acid) CHITOSAN sciatic nerve defect NSFC grants neural regeneration
下载PDF
Controlled release of cisplatin and cancer cell apoptosis with cisplatin encapsulated poly(lactic-co-glycolic acid) nanoparticles 被引量:1
3
作者 A. Champa Jayasuriya Anthony J. Darr 《Journal of Biomedical Science and Engineering》 2013年第5期586-592,共7页
The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used ... The goal of the present study is to utilize cis-diamminedichloroplatinum (cisplatin) loaded polymer nanoparticles (NPs) to give a controlled, extended, and local drug therapy for the treatment of cancer. We have used biodegradable and biocompatible poly(lactic-co-glycolic acid) (PLGA) to prepare the NPs by adjusting the double emulsion technique using poly(vinylalcohol) as a surface active agent. The PLGA NPs were characterized for particle size and shape, controlled release of cisplatin, and degradation. Cisplatin solubility in deionized water was increased up to 4 mg/mL by simply changing the solution parameters. Cisplatin encapsulated NPs were incubated in phosphate buffered saline (PBS) at 37?C to study the release kinetics of cisplatin. Cisplatin was released in a sustained manner with less than 20% release during a 3-day period followed by 50% release during a 21-day period. A degradation study of PLGA NPs demonstrated the loss of spherical shape during a 21-day period. We also examined the cisplatin sensitive A2780 cell apoptosis when cells were incubated with cisplatin encapsulated PLGA NPs. A large number of cell apoptosis occurred as a result of cisplatin release from the PLGA NPs. These results suggest that cisplatin encapsulated PLGA NPs can be used to treat the cancer cells by injecting them into a localized site minimizing the side effects. 展开更多
关键词 NANOPARTICLES CISPLATIN poly(lactic-co-glycolic Acid) Controlled Release Cancer Apopotosis
下载PDF
Evaluation of in vitro and in vivo immunostimulatory activities of poly(lactic-co-glycolic acid) nanoparticles loaded with soluble and autoclaved Leishmania infantum antigens: A novel vaccine candidate against visceral leishmaniasis 被引量:1
4
作者 Emrah Sefik Abamor Adil Allahverdiyev +4 位作者 Ozlem Ayse Tosyali Melahat Bagirova Tayfun Acar Zeynep Mustafaeva Serap Derman 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2019年第8期353-364,共12页
Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of anti... Objective: To prepare and characterize poly lactic-co-glycolic acid(PLGA) nanoparticles loaded with soluble leishmanial antigen or autoclaved leishmanial antigen and explore in vitro and in vivo immunogenicity of antigen encapsulated nanoparticles. Methods: Water/oil/water double emulsion technique was employed to synthesize PLGA nanoparticles, and scanning electron microscopy, Fourier transform infrared spectroscopy and Zeta-potential measurements were used to identify the characteristics of nanoparticles. Cytotoxicity of synthetized nanoparticles on J774 macrophage were investigated by MTT assays. To determine the in vitro immunostimulatory efficacies of nanoparticles, griess reaction and ELISA was used to measure the amounts of NO and cytokines. During the in vivo analysis, Balb/c mice were immunized with vaccine formulations, and protective properties of nanoparticles were measured by Leishman Donovan unit in the liver following the infection. Cytokine levels in spleens of mice were determined by ELISA. Results: MTT assay showed that neither soluble leishmanial antigen nor autoclaved leishmanial antigen encapsulated nanoparticles showed cytotoxicity against J774 macrophage cells. Contrary to free antigens, both autoclaved leishmanial antigen-nanoparticle and soluble leishmanial antigen-nanoparticle formulations led to a 10 and 16-fold increase in NO amounts by macrophages, respectively. Leishman Donovan unit calculations revealed that soluble leishmanial antigen-nanoparticles and autoclaved leishmanial antigen-nanoparticles yielded 52% and 64% protection against visceral leishmaniasis in mouse models. Besides, in vitro and in vivo tests demonstrated that by increasing IFN-γ and IL-12 levels and inhibiting IL-4 and IL-10 secretions, autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigennanoparticles triggered Th1 immune response. Conclusions: Both autoclaved leishmanial antigen-nanoparticles and soluble leishmanial antigen-nanoparticles formulations provide exceptional in vitro and in vivo immunostimulatory activities. Hence, PLGA-based antigen delivery systems are recommended as potential vaccine candidates against visceral leishmaniasis. 展开更多
关键词 VISCERAL LEISHMANIASIS Vaccine Delivery IMMUNOSTIMULANT poly lactic-co-glycolic acid(PLGA) Nanoparticle
下载PDF
Poly(lactic-co-glycolic acid) conduit for repair of injured sciatic nerve A mechanical analysis 被引量:1
5
作者 Tao Yu Changfu Zhao +2 位作者 Peng Li Guangyao Liu Min Luo 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第21期1966-1973,共8页
Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic ner... Tensile stress and tensile strain directly affect the quality of nerve regeneration after bridging nerve defects by poly(lactic-co-glycolic acid) conduit transplantation and autogenous nerve grafting for sciatic nerve injury. This study collected the sciatic nerve from the gluteus maximus muscle from fresh human cadaver, and established 10-mm-long sciatic nerve injury models by removing the ischium, following which poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts were transplanted. Scanning electron microscopy revealed that the axon and myelin sheath were torn, and the vessels of basilar membrane were obstructed in the poly(lactic-co-glycolic acid) conduit-repaired sciatic nerve following tensile testing. There were no significant differences in tensile tests with autogenous nerve graft-repaired sciatic nerve. Following poly(lactic-co-glycolic acid) conduit transplantation for sciatic nerve repair, tensile test results suggest that maximum tensile load, maximum stress, elastic limit load and elastic limit stress increased compared with autogenous nerve grafts, but elastic limit strain and maximum strain decreased. Moreover, the tendencies of stress-strain curves of sciatic nerves were similar after transplantation of poly(lactic-co-glycolic acid) conduits or autogenous nerve grafts. Results showed that after transplantation in vitro for sciatic nerve injury, poly(lactic-co-glycolic acid) conduits exhibited good intensity, elasticity and plasticity, indicating that poly(lactic-co-glycolic acid) conduits are suitable for sciatic nerve injury repair. 展开更多
关键词 neural regeneration peripheral nerve injury sciatic nerve injury model polylactic-co-glycolic acid) TRANSPLANTATION stress strain mechanical property grants-supported paper NEUROREGENERATION
下载PDF
Transplantation of Nogo-66 receptor gene-silenced cells in a poly(D,L-lactic-co-glycolic acid) scaffold for the treatment of spinal cord injury 被引量:8
6
作者 Dong Wang Yuhong Fan Jianjun Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第8期677-685,共9页
Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L... Inhibition of neurite growth, which is in large part mediated by the Nogo-66 receptor, affects neural regeneration following bone marrow mesenchymal stem cell transplantation. The tissue engineering scaffold poly(D,L-lactide-co-glycolic acid) has good histocompatibility and can promote the growth of regenerating nerve fibers. The present study used small interfering RNA to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells and Schwann cells, which were subsequently transplanted with poly(D,L-lactide-co-glycolic acid) into the spinal cord lesion regions in rats. Simultaneously, rats treated with scaffold only were taken as the control group. Hematoxylin-eosin staining and immunohistochemistry revealed that at 4 weeks after transplantation, rats had good motor function of the hind limb after treatment with Nogo-66 receptor gene-silenced ceils prus the poly(O,L-lactide-co-glycolic acid) scaffold compared with rats treated with scaffold only, and the number of bone marrow mesenchymal stem cells and neuron-like cells was also increased. At 8 weeks after transplantation, horseradish peroxidase tracing and transmission electron microscopy showed a large number of unmyelinated and myelinated nerve fibers, as well as intact regenerating axonal myelin sheath following spinal cord hemisection injury. These experimental findings indicate that transplantation of Nogo-66 receptor gene-silenced bone marrow mesenchymal stem cells and Schwann cells plus a poly(D,L-lactide-co-glycolic acid) scaffold can significantly enhance axonal regeneration of spinal cord neurons and improve motor function of the extremities in rats following spinal cord injury. 展开更多
关键词 neural regeneration spinal cord injury bone marrow mesenchymal stem cells Schwann cells poly(D L-lactide-co-glycolic acid) Nogo-66 receptor gene rats gene silencing grants-supportedpaper photographs-containing paper neuroregeneration
下载PDF
Viscoelasticity of repaired sciatic nerve by poly(lactic-co-glycolic acid) tubes 被引量:4
7
作者 Chengdong Piao Peng Li +1 位作者 Guangyao Liu Kun Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3131-3138,共8页
Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxati... Medical-grade synthetic poly(lactic-co-glycolic acid) polymer can be used as a biomaterial for nerve repair because of its good biocompatibility, biodegradability and adjustable degradation rate. The stress relaxation and creep properties of peripheral nerve can be greatly improved by repair with poly(lactic-co-glycolic acid) tubes. "Fen sciatic nerve specimens were harvested from fresh corpses within 24 hours of death, and were prepared into sciatic nerve injury models by creating a 10 mm defect in each specimen. Defects were repaired by anastomosis with nerve autografts and poly(lactic-co-glycolic acid) tubes. Stress relaxation and creep testing showed that at 7 200 seconds the sciatic nerve anastomosed by poly(lactic-co-glycolic acid) tubes exhibited a greater decrease in stress and increase in strain than those anastomosed by nerve autografts. These findings suggest that poly(lactic-co-glycolic acid) exhibits good viscoelasticity to meet the biomechanical require- ments for a biomaterial used to repair sciatic nerve injury. 展开更多
关键词 neural regeneration peripheral nerve injury sciatic nerve injury model nerve autograftpolylactic-co-glycolic acid) TRANSPLANTATION repair stress relaxation CREEP biomaterialneuroregeneration
下载PDF
A Study of Surface Modification of Poly(lactic-co-glycolic) Acid Using Argon Ion Irradiation
8
作者 Ananta Raj Adhikari Buddhi Prasanga Tilakaratne +1 位作者 Dharshana Wijesundera Wei-Kan Chu 《Journal of Surface Engineered Materials and Advanced Technology》 2014年第6期326-331,共6页
The effect of Argon ion irradiation to the surface properties of poly(lactic-co-glycolic) acid (PLGA) was studied. A beam of 170 keV Argon ions was implanted at different fluencies (1 × 1012, 1 × 1013, 1 ... The effect of Argon ion irradiation to the surface properties of poly(lactic-co-glycolic) acid (PLGA) was studied. A beam of 170 keV Argon ions was implanted at different fluencies (1 × 1012, 1 × 1013, 1 × 1014, and 1 × 1015 ions/cm2). X-ray photoelectron spectroscopy (XPS) was used to analyze the evolution of the bonding microstructure of PLGA due to irradiation. Surface morphology was monitored using atomic force microscopy (AFM). AFM analysis shows that film roughness increased to maximum at the dose of 1 × 1014 ions/cm2 where the formations of hillocks were also detected. Hydrophilicity of PLGA is important for their applications in biomedicine such as bioscaffolds. Hydrophilicity was monitored using water contact angle measurements for both unmodified and ion-modified PLGA. It was observed that hydrophilicity of PLGA changes with the ion irradiation. This demonstrates that ion irradiation can be an alternative approach to control hydrophilicity of PLGA. PLGA scaffolds modified with ion irradiation could therefore be more suitable for the biomedical applications. 展开更多
关键词 poly(lactic-co-glycolic) ACID SCAFFOLD Surface Modification Ion Irradiation
下载PDF
Effects of poly lactic-co-glycolic acid-Nogo A antibody delayed-release microspheres on regeneration of injured spinal cord in rats
9
作者 Hai Lan Yueming Song 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第5期358-364,共7页
BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous funct... BACKGROUND: Nogo A antigen is the major inhibiting factor blocking regeneration of the injured spinal cord. Neutralizing Nogo A antigens using Nogo A antibodies may help promote neurite regeneration and nervous function recovery. For successful regeneration, sustained release of the antibody from a biodegradable material loaded with Nogo A antibodies to the injury site is required. OBJECTIVE: To compare the therapeutic effects of poly lactic-co-glycolic acid (PLGA)-Nogo A antibody delayed-release microspheres and Nogo A antibody alone on spinal regeneration in Sprague-Dawley rats with complete transverse injury to the spinal cord. DESIGN, TIME AND SETTING: A randomized, controlled animal trial was performed at the Pharmacological Laboratory of West China Center of Medical Sciences, Sichuan University, between October 2007 and January 2008. MATERIALS: Goat anti-rat Nogo A monoclonal antibody was purchased from Santa, American; goat anti-rat neurofilament 200 monoclonal antibody was from Zhongshan Goldenbridge, Beijing, China; PLGA-Nogo A antibody delayed-release microspheres were provided by the College of Pharmacy, Sichuan University. METHODS: A total of 36 adult female Sprague Dawley rats were used to establish models of completely transected spinal cord injury, at T10. Animals were randomly divided into three groups (n=12): model, Nogo A antibody alone, and Nogo A antibody delayed-release microsphere groups. After transverse injury of the spinal cord, 50 μ L normal saline solution, 50 μL normal saline solution containing 50μL g Nogo A antibody, and 50 μL normal saline solution containing 50 μg Nogo A antibody microspheres were administered to the respective groups at the injury site. MAIN OUTCOME MEASURES: The expression of Nogo A and neurofilament 200 in injured spinal cord was tested immunohistochemically, and motor function of rats was assessed by Basso-Beattie-Bresnahan (BBB) locomotor rating scale. RESULTS: Four weeks after injury, expression of Nogo A in microsphere group was significantly less than model and Nogo A antibody alone groups (P 〈 0.05); while there was no significant difference between model and Nogo A antibody alone groups (P 〉 0.05). Ten weeks after injury, microsphere group showed a significantly greater expression of neurofilament 200 than model and Nogo A antibody alone groups (P 〈 0.05); while no significant difference was found between model and Nogo A antibody alone groups (P 〉 0.05). At postoperative weeks 5 and 6, the score of BBB locomotor rating scale in microsphere group was significantly greater than the model group (P 〈 0.05), and at postoperative weeks 7 10, the score was much greater than model and Nogo A antibody alone groups (P 〈 0.05). CONCLUSION: Nogo A antibody delayed-release microspheres decreased Nogo A expression, increased neurofilament 200 expression in the injured spinal cord of rats, and promoted recovery of motor function through sustained drug release over a long-term period. 展开更多
关键词 Nogo A antibody MICROSPHERES poly lactic-co-glycolic acid spinal cord injury neural regeneration
下载PDF
A porous poly(lactic-co-glycolic acid) scaffold induces innervation in a rabbit model of disc degeneration following annular injury
10
作者 Long Xin Guocan Han +4 位作者 Fengdong Zhao Xing Zhao Wei Wang Changyou Gao ShunwuFan 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第8期606-612,共7页
BACKGROUND: A degradable poly(lactic-co-glycolic acid) (PLGA) scaffold has been used to construct a degradable porous scaffold. This template can simulate the in vivo microenvironment and promote tissue formation... BACKGROUND: A degradable poly(lactic-co-glycolic acid) (PLGA) scaffold has been used to construct a degradable porous scaffold. This template can simulate the in vivo microenvironment and promote tissue formation. OBJECTIVE: To observe the histopathological changes during degeneration and regeneration of the intervertebral disc, and to analyze the effects of a PLGA scaffold on nerve fiber ingrowth into the lesion in vivo. DESIGN, TIME AND SETTING: A randomized, controlled animal experiment was performed at the Orthopaedic Laboratory, Clinic Medical Research Institution, Sir Run Run Shaw Hospital, Zhejiang University, from December 2007 to July 2008. MATERIALS: PLGA (China Textile Academy); growth-associated protein-43 (Life-span, USA); and protein gene product 9.5 antibody (AbD, United Kingdom) were used in this study. METHODS: Three consecutive segments of the intervertebral disc of thirty-two healthy adult male New Zealand rabbits were exposed, comprising L3-4, L4-5 and L5-6. Experimental intervertebral disc (L4-5 and L5-6) models were established by two different methods. In the test (trephine + scaffold) group, a 5-mm deep hole was drilled into the annulus fibrosus using a 3-mm diameter trephine, and the PLGA scaffold was implanted into the hole. In the acupuncture group, the remaining experimental intervertebral disc annulus fibrosus was damaged using a 16G needle at a depth of 5 mm. The L3-4 disc served as a control. MAIN OUTCOME MEASURES: Intervertebral disc degeneration was assessed using radiography, magnetic resonance imaging, and histological examination at various time points post-surgery. Nerve fiber ingrowth into the degenerated intervertebral disc was observed using immunohistochemical staining for growth-associated protein-43 and protein gene product 9.5. RESULTS: Compared with the normal controls, the heights of the damaged intervertebral discs were decreased, and T2 signal intensity was decreased in the test and acupuncture groups 2 weeks post-surgery. Intervertebral disc degeneration was faster in the test group than in the acupuncture group. PLGA was coated with newly formed tissue, gradually degraded, and absorbed, and could induce tissue ingrowth deep into the annulus fibrosus. Results of immunohistochemical staining showed that nerve fibers were distributed in newly formed tissue in the test group, and in the superficial layer or surrounding scar tissue in the acupuncture group. CONCLUSION: A porous PLGA scaffold provides an important biological channel to induce nerve fiber ingrowth deep into the degenerated intervertebral disc. 展开更多
关键词 annulus fibrosus damage intervertebral disc degeneration polylactic-co-glycolic acid) scaffold nerve ingrowth
下载PDF
Preparation,Characterization,and Antitumor Efficacy of Camptothecine-Loaded Hydroxyapatite / Poly( lactic-co-glycolic acid ) Composite Nanofibers via Electrospinning
11
作者 冯炜 陈梦霞 +3 位作者 陈良 尹郅祺 聂伟 何创龙 《Journal of Donghua University(English Edition)》 EI CAS 2014年第5期561-565,共5页
In the past decade, various medicated nanofibrous scaffolds have been developed as effective drug delivery systems for postsurgical cancer treatment.In this study, hydroxyapatite nanoparticles( HANPs) were used as car... In the past decade, various medicated nanofibrous scaffolds have been developed as effective drug delivery systems for postsurgical cancer treatment.In this study, hydroxyapatite nanoparticles( HANPs) were used as carriers to load an anticancer agent—camptothecine( CPT),and the CPT-loaded HANPs( CPT@ HANPs) was then incorporated into poly( lactic-co-glycolic acid)( PLGA) nanofibers via electrospinning.Thus fabricated medicated nanofibrous mats( PLGA / CPT @ HANPs) were characterized by field emission scanning electron microscope( FESEM),transmission electron microscope( TEM), attenuated total reflection Fourier transform infrared spectroscopy( ATR-FTIR) and X-ray diffraction( XRD).The release profiles of CPT from the medicated electrospun mats were obtained and their in vitro anticancer efficacy against HeL a cells was also evaluated.The results showed that the CPT was successfully loaded onto the surface of HANPs,and the prepared electrospun mats exhibited a homogeneous and continuous morphology.Furthermore,the loaded CPT exhibited a sustained release behavior from the nanofibrous mats and the released CPT showed a long-term anticancer efficacy against HeL a cells.Therefore,the prepared medicated electrospun mats may be served as an effective drug delivery device for local antitumor treatment. 展开更多
关键词 poly (-lactic-co-glycolic acid) ( PLGA ) HYDROXYAPATITE camptothecine NANOFIBER ANTICANCER
下载PDF
Degradation mechanisms of poly (lactic-co-glycolic acid) films in vitro under static and dynamic environment 被引量:2
12
作者 黄莹莹 齐民 +2 位作者 张萌 刘洪泽 杨大智 《中国有色金属学会会刊:英文版》 CSCD 2006年第B01期293-297,共5页
To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weig... To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change, mass loss, water uptake, etc. The results show that in dynamic system, significant mass loss begins until 10 d while mass loss does not begin until 30 d later, while weight-average molecular weight decreases observably at the beginning, and the appeasable mass loss happens in 20 d in static system, which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections, which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium, which make the hydrolytic cleavage of ester bonds inside specimen delayed. 展开更多
关键词 聚乳酸-乙醇酸共聚物 薄膜 水解 降解机制 静力环境 动力环境 缓释体系
下载PDF
One-Step Preparation of Poly-Lactic-Co-Glycolic-Acid Microparticles to Prevent the Initial Burst Release of Encapsulated Water-Soluble Proteins
13
作者 Hiroyuki Takabe Moriyuki Ohkuma +2 位作者 Yasunori Iwao Shuji Noguchi Shigeru Itai 《Pharmacology & Pharmacy》 2013年第8期578-583,共6页
An initial burst is often observed during the release of active pharmaceutical ingredients (APIs) from poly-lactic-coglycolic-acid (PLGA) microparticles (MPs) which have been prepared by the emulsion-solvent evaporati... An initial burst is often observed during the release of active pharmaceutical ingredients (APIs) from poly-lactic-coglycolic-acid (PLGA) microparticles (MPs) which have been prepared by the emulsion-solvent evaporation method. Herein, we describe the development of a simple one-step coating method that suppresses the initial burst release process. This new method involves coating the PLGA-MPs with PLGA, with the coating process being performed through the phase separation of PLGA on the surface of PLGA-MPs using the emulsion-solvent evaporation method. Bovine serum albumin (BSA) was encapsulated in the PLGA-MPs as a model API. The coated MPs were spherical in shape with no pores on their smooth surface, whereas the non-coated PLGA-MPs had porous surfaces. An in vitro release study showed that the residual levels of BSA in the coated and non-coated PLGA-MPs after 1 h were about 99% and 16% of the original loads, respectively. The one-step coating method therefore represents a useful method for preparing PLGA-MPs that do not give an initial burst release of proteinaceous APIs. 展开更多
关键词 poly-lactic-co-glycolic-Acid Microparticle Suppression of INITIAL Burst Release Coating Bovine Serum Albumin
下载PDF
4天香烟烟雾暴露联合poly(I:C)刺激对小鼠肺部免疫应答及干扰素表达的影响
14
作者 董晓飞 梁紫尧 +5 位作者 范龙 全景羽 林琳 周颖芳 吴蕾 于旭华 《中国免疫学杂志》 CAS CSCD 北大核心 2024年第1期67-71,共5页
目的:探讨短期香烟烟雾暴露联合poly(I:C)刺激对小鼠肺部免疫应答及干扰素表达的影响。方法:BALB/c小鼠随机分为4组:对照组、熏烟组、poly(I:C)组和熏烟联合poly(I:C)组。检测支气管肺泡灌洗液(BALF)中总细胞数及细胞分类计数;普通光镜... 目的:探讨短期香烟烟雾暴露联合poly(I:C)刺激对小鼠肺部免疫应答及干扰素表达的影响。方法:BALB/c小鼠随机分为4组:对照组、熏烟组、poly(I:C)组和熏烟联合poly(I:C)组。检测支气管肺泡灌洗液(BALF)中总细胞数及细胞分类计数;普通光镜下观察各组细胞形态;荧光定量PCR检测肺组织细胞因子、趋化因子和干扰素及干扰素刺激基因表达。结果:与对照组相比,熏烟联合poly(I:C)组总细胞数计数、巨噬细胞与中性粒细胞计数明显升高(P<0.05),且熏烟联合poly(I:C)组巨噬细胞计数高于poly(I:C)组;与poly(I:C)组比较,熏烟联合poly(I:C)组小鼠气道灌洗液巨噬细胞体积较大,呈圆形或不规则形,细胞质较多空泡;与对照组相比,熏烟联合poly(I:C)组小鼠肺组织中性粒细胞趋化因子CXCL1(P<0.05)、CXCL2(P<0.01)和淋巴细胞趋化因子CCL2(P<0.01)mRNA表达升高,肺组织IL-1β、IL-6、TNF-αmRNA表达明显升高(P<0.01),肺组织IFN-β(P<0.01)、IFN-γ(P<0.05)、MX2(P<0.01)和IP-10(P<0.01)表达显著升高,且与poly(I:C)组小鼠相比,熏烟联合poly(I:C)组小鼠肺组织CXCL2(P<0.05)、TNF-α(P<0.01)和IFN-β(P<0.05)mRNA表达明显升高。结论:熏烟联合poly(I:C)诱导了小鼠肺部炎症反应和干扰素及干扰素刺激基因表达。同时,香烟暴露加剧了poly(I:C)诱导的小鼠肺部急性炎症反应和Ⅰ型干扰素表达。 展开更多
关键词 香烟烟雾 poly(I:C) 免疫细胞 气道炎症 干扰素
下载PDF
Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes 被引量:1
15
作者 Lujuan Liu Tong Wang +6 位作者 Li Sun Tinglu Song Hao Yan Chunli Li Daobin Mu Jincheng Zheng Yang Dai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期67-74,共8页
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi... Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃. 展开更多
关键词 all-solid-state battery high voltage li-ion conductivity molecular interaction poly(ethylene oxide)
下载PDF
Flexible and Robust Functionalized Boron Nitride/Poly(p‑Phenylene Benzobisoxazole)Nanocomposite Paper with High Thermal Conductivity and Outstanding Electrical Insulation 被引量:1
16
作者 Lin Tang Kunpeng Ruan +3 位作者 Xi Liu Yusheng Tang Yali Zhang Junwei Gu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期423-437,共15页
With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature... With the rapid development of 5G information technology,thermal conductivity/dissipation problems of highly integrated electronic devices and electrical equipment are becoming prominent.In this work,“high-temperature solid-phase&diazonium salt decomposition”method is carried out to prepare benzidine-functionalized boron nitride(m-BN).Subsequently,m-BN/poly(pphenylene benzobisoxazole)nanofiber(PNF)nanocomposite paper with nacremimetic layered structures is prepared via sol–gel film transformation approach.The obtained m-BN/PNF nanocomposite paper with 50 wt%m-BN presents excellent thermal conductivity,incredible electrical insulation,outstanding mechanical properties and thermal stability,due to the construction of extensive hydrogen bonds andπ–πinteractions between m-BN and PNF,and stable nacre-mimetic layered structures.Itsλ∥andλ_(⊥)are 9.68 and 0.84 W m^(-1)K^(-1),and the volume resistivity and breakdown strength are as high as 2.3×10^(15)Ωcm and 324.2 kV mm^(-1),respectively.Besides,it also presents extremely high tensile strength of 193.6 MPa and thermal decomposition temperature of 640°C,showing a broad application prospect in high-end thermal management fields such as electronic devices and electrical equipment. 展开更多
关键词 poly(p-phenylene-2 6-benzobisoxazole)nanofiber Boron nitride Thermal conductivity Electrical insulation
下载PDF
Innovative approach to boosting the chemical stability of AZ31 magnesium alloy using polymer-modified hybrid metal oxides
17
作者 Mosab Kaseem Ananda Repycha Safira +3 位作者 Mohammad Aadil Tehseen Zehra Muhammad Ali Khan Arash Fattah-alhosseini 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1068-1081,共14页
Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite l... Meeting the demands of complex and advanced applications requires the development of high-performance hybrid materials with unique properties.However,the integration of polymeric frameworks with MgO/WO_(3) composite layers faces challenges due to the lack of understanding of the formation mechanism and the challenge of determining the impact of self-assembled architecture on anticorrosive properties.In this study,we aimed to enhance the corrosion resistance of the MgO layer produced by plasma electrolysis(PE)of AZ31 Mg alloy by incorporating WO_(3) with partially phosphorated poly(vinyl alcohol)(PPVA).Two types of porous MgO layers were produced using the PE process with an alkaline-phosphate electrolyte,one with and one without WO_(3) nanoparticles,which were subsequently immersed in an aqueous solution of PPVA.Incorporating PPVA into the WO_(3)-MgO layer resulted in hybrids being deposited in a fragmented manner,creating a“laminar reef-like structure”that sealed most of the structural defects in the layer.The PPVA-sealed WO_(3)-based coating exhibited superior corrosion resistance compared to the other samples.Computational analyses were employed to explore the mechanism underlying the formation of PPVA/WO_(3) hybrids on the MgO layer.These findings suggest that PPVA-WO_(3)-MgO hybrid coatings can potentially improve corrosion resistance in various fields. 展开更多
关键词 Plasma electrolysis poly(vinyl alcohol) Tungsten trioxide SEALING CORROSION DFT.
下载PDF
Tuning the cross-linked structure of basic poly(ionic liquid)to develop an efficient catalyst for the conversion of vinyl carbonate to dimethyl carbonate
18
作者 Zhaoyang Qi Shiquan Zhong +4 位作者 Huiyun Su Changshen Ye Limei Ren Ting Qiu Jie Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第8期106-116,共11页
Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ... Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC. 展开更多
关键词 poly(ionic liquid) Cross-linking degree Dimethyl carbonate production Transesterification reaction Mechanism
下载PDF
Dual-salt poly(tetrahydrofuran) electrolyte enables quasi-solid-state lithium metal batteries to operate at -30 ℃
19
作者 Zhiyong Li Zhuo Li +1 位作者 Rui Yu Xin Guo 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期456-463,共8页
The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migr... The stable operation of solid-state lithium metal batteries at low temperatures is plagued by severe restrictions from inferior electrolyte-electrode interface compatibility and increased energy barrier for Li^(+)migration.Herein,we prepare a dual-salt poly(tetrahydrofuran)-based electrolyte consisting of lithium hexafluorophosphate and lithium difluoro(oxalato)borate(LiDFOB).The Li-salt anions(DFOB−)not only accelerate the ring-opening polymerization of tetrahydrofuran,but also promote the formation of highly ion-conductive and sustainable interphases on Li metal anodes without sacrificing the Li^(+)conductivity of electrolytes,which is favorable for Li^(+)transport kinetics at low temperatures.Applications of this polymer electrolyte in Li||LiFePO_(4)cells show 82.3%capacity retention over 1000 cycles at 30℃and endow stable discharge capacity at−30℃.Remarkably,the Li||LiFePO4 cells retain 52%of their room-temperature capacity at−20℃and 0.1 C.This rational design of dual-salt polymer-based electrolytes may provide a new perspective for the stable operation of quasi-solid-state batteries at low temperatures. 展开更多
关键词 poly(tetrahydrofuran) Dual-salt electrolyte Solidel ectrolyte interphase Low-temperature operation Quasi-solid-state battery
下载PDF
Synergy of Polydopamine‑Assisted Additive Modification and Hierarchical‑Morphology Poly(Vinylidene Fluoride)Nanofiber Mat for Ferroelectric‑Assisted Triboelectric Nanogenerator
20
作者 Junseo Gu Donghyun Lee +2 位作者 Jeonghoon Oh Hyeokjun Si Kwanlae Kim 《Advanced Fiber Materials》 SCIE EI CAS 2024年第6期1910-1926,共17页
In the last decade,numerous physical modification methods have been introduced to enhance triboelectric nanogenerator(TENG)performance although they generally require complex and multiple fabrication processes.This st... In the last decade,numerous physical modification methods have been introduced to enhance triboelectric nanogenerator(TENG)performance although they generally require complex and multiple fabrication processes.This study proposes a facile fabrication process for Poly(vinylidene fluoride)(PVDF)nanofiber(NF)mats incorporating additive and nonadditive physical modifications.Patterned PVDF NF mats are prepared by electrospinning using a metal mesh as the NF collector.As a negative triboelectric material,the TENG with the patterned PVDF NF mat exhibits superior performance owing to the engineered morphology of the contact layer.PVDF is crucial in TENGs owing to its superior ferroelectric properties and surface charge density when combined with specific electroceramics.Hence,the synergy of the physical modification methods is achieved by incorporating BaTiO3(BTO)nanoparticles(NPs)into the PVDF.By functionalizing BTO NPs with polydopamine,the TENG performance is further improved owing to the enhanced dispersion of NPs and improved crystallinity of the PVDF chains.Utilizing large NPs produces a nanopatterning effect on the NF surface,thereby resulting in the hierarchical structure of the NF mats.The source of the voltage signals from the TENG is analyzed using fast Fourier transform. 展开更多
关键词 Triboelectric nanogenerator Electrospinning Physical modification poly(vinylidene fluoride) Barium titanate polyDOPAMINE
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部