The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts ...The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.展开更多
The nomenclature for compounds that are modified with isotopes is growing every day. Compounds can be modified with isotopes either individually, in a functional group or groups, or completely with all atomic centers ...The nomenclature for compounds that are modified with isotopes is growing every day. Compounds can be modified with isotopes either individually, in a functional group or groups, or completely with all atomic centers of the element. This diversity of isotope-modified compounds increases the range of researches that can be studied using them. Compounds modified with isotopes of carbon-13 or nitrogen-15 can be converted into carbon monoxide, carbon dioxide and molecular nitrogen. Currently, only the average value of carbon-13 or nitrogen-15 isotopes can be determined. However, by directly determining the atomic share of these isotopes in organic compounds modified with isotopes, information about the isotopic centers of the element can be obtained. The atomic fraction of an element is defined as a single carbon or nitrogen isotope-modified center or centers, or all centers that are isotope-modified with that element at the same time. Carbon-13 or nitrogen-15 isotopes’ atomic fraction can be determined molecularly or with fragment ions of different elemental content, or both. This makes the method self-verifying, increasing the accuracy and reliability of the results obtained. Amino acids, such as asparagine, aspartic acid, methionine, and threonine, are essential for the human body. This proposed method of isotopic analysis will increase the possibilities for scientific research using these compounds.展开更多
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulat...Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.展开更多
The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, th...Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, therefore a controllable delivery of aspirin is of importance to lighten those side effects. In this work, poly(lactic acid)(PLA) was chosen as the carrier to prepare PLA-aspirin microspheres by using the traditional and the improved solvent evaporation methods. It was found that no matter which experimental condition was, the encapsulation efficiency of aspirin was higher by using the improved method than that of the traditional method. Specifically, when the concentration of polyvinyl alcohol = 1%(mass),the polymer concentration = 1:20, the oil/water rate = 1:2.5, PLA-aspirin microspheres were obtained via the improved method with a high yield of 82.83%(mass) and an encapsulation efficiency of 44.09%. PLAaspirin microspheres were then prepared continuously using the improved method, which further enhanced the encapsulation efficiency to 54.56%. Approximate 85% aspirin released from microspheres within 7 days. Obvious degradation which was represented by reduction on hardness was observed by soaking microspheres in PBS for 60 days. This work is of interest because it provides a continuous route to prepare PLA-aspirin microspheres continuously with a high drug encapsulation efficiency.展开更多
Polyaspartic acid(PASP)is suitable for the inhibition of scale deposition from water.To enhance its in- hibition efficiency,PASP was modified by reacting aspartic acid(Asp)with glutamic acid(Glu)to provide Asp-Glu cop...Polyaspartic acid(PASP)is suitable for the inhibition of scale deposition from water.To enhance its in- hibition efficiency,PASP was modified by reacting aspartic acid(Asp)with glutamic acid(Glu)to provide Asp-Glu copolymer under microwave irradiation.The influence of reaction parameters on conversion,molecular weight and inhibition of CaCO3 precipitation was investigated Infra-red.(IR), 1H nuclear magnetic resonance( 1H NMR)and 13C nuclear magnetic resonance( 13C NMR)spectroscopies were used to characterize the copolymer.The results show that copolymerization of aspartic acid and glutamic acid is catalyzed by a small amount of phosphorous acid (H3PO4)in solvent,the product conversion is 98.05%under the following conditions:the molar ratio of glutamic acid to reactant[Glu/(Asp+Glu)]is 0.3 and that of catalyst(Cat)to reactant[Cat/(Glu+Asp)]is 0.05(0.65ml H3PO4),the volume of solvent dimethylformamide is 16ml,the microwave power used is 720W and the reaction for 3 min.The weight average molecular weight of copolymer synthesized under these conditions is 2709 and the inhi- bition rate for CaCO3 is 97.75%.展开更多
A biodegradable gene transfer vector, poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine] has been developed by thermal polycondensation of aspartic acid and lysine, and branch poly(ethylenimine) (Mw less than ...A biodegradable gene transfer vector, poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine] has been developed by thermal polycondensation of aspartic acid and lysine, and branch poly(ethylenimine) (Mw less than 600) was grafted to the backbone. The polymer was characterized by 1H NMR. It appeared lower cytotoxity compared to poly(ethylenimine) (25KDa), which was quantified by MTT assay. Electrophoresis indicated that the polymer could retardate DNA at N/P ratio 1.2-1.8 (w/w). Transfection efficiency of the complexes was studied in NT2 cell lines. It was 1.5 fold higher than molecular weight PEI (Mw = 25KDa).展开更多
Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(te...Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.展开更多
Poly(aspartic acid-itaconic acid) copolymer was synthesized from aspartic acid(Asp) and itaconic acid(Ita) under microwave irradiation. The effects of microwave power, microwave irradiation time, molar ratio of itacon...Poly(aspartic acid-itaconic acid) copolymer was synthesized from aspartic acid(Asp) and itaconic acid(Ita) under microwave irradiation. The effects of microwave power, microwave irradiation time, molar ratio of itaconic acid and aspartic acid, catalyst type, catalyst and organic solvent content on copolymer yield, and the performance for inhibition of CaCO_3 fouling were investigated. It was found that the product yield achieved a highest record of 95% when the amount of catalyst Na H_2PO_4 was 0.012 mol, the amount of organic solvent propylene carbonate was 16 m L, the molar ratio of Asp/Ita was 3:1, the microwave output power was 1200 W and the irradiation time was 5.5 min. And the product performance for inhibition of calcium carbonate also reached a highest value of 94.38%. Structural characterization of the product showed that the product was the aspartic acid-itaconic acid copolymer.展开更多
A nanostructured polymer film incorporated gold nanoparticles modified electrode was fabricated. The fabrication process involved a previous electropolymerization of aspartic acid and followed by the eletrodeposition ...A nanostructured polymer film incorporated gold nanoparticles modified electrode was fabricated. The fabrication process involved a previous electropolymerization of aspartic acid and followed by the eletrodeposition of gold nano-particles on the glassy carbon electrode. The resulting poly (aspartic acid)-nanogold modified electrode (PAA- nano-Au/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectros-copy (EIS). A higher catalytic activity was obtained to electrocatalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) due to the enhanced peak current and well-defined peak separations compared with three, bare GCE, PAA/GCE and nano-Au/GCE. Simultaneous determination of DA, AA, and UA were studied by voltammetry. The linear range of 5.0 × 10-7 - 1.0 × 10-4 M for DA, 5.0 × 10-6 - 2.0 × 10-3 M for AA and 5.0 × 10-6 - 1.0 × 10-3 M for UA was obtained. The detection limit was calculated for DA, AA and UA as being 6.5 × 10-8 M, 5.6 × 10-7 M and 3.0 × 10-7 M, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of DA, AA and UA in calf serum and fetal calf serum samples.展开更多
Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B e...Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B expression, siRNA may provide a novel approach to treat neuropathic pain and possibly nerve injury. However, an efficient and safe vector for NR2B siRNA has not been discovered. This study shows that a water soluble lipopolymer (WSLP) comprised of low molecular weight polyethyleneimine (PEI) and cholesterol can deliver siRNA targeting NR2B for the treatment of neuropathic pain. Results show that intrathecal injection of WSLP/siRNA complexes for 3 days inhibit NR2B gene expression with reductions in mRNA and protein levels by 59% and 54%, respectively, compared with control rats (P 〈 0.01). Injection of WSLP complexed with scrambled siRNA, or PEI with siRNA did not show this inhibitory effect. Moreover, injection of WSLP/siRNA complexes significantly relieved neuropathic pain at 3, 7, 12, and 21 days, while injection of WSLP with scrambled siRNA or PEI with siRNA did not. These results demonstrate that WSLP can efficiently deliver siRNA targeting NR2B in vivo and relieve neuropathic pain.展开更多
Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, t...Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, treat fatigue and depression along with its significance in accurate age estimation in the field of forensic science and is an important constituent of ‘aspartame’, the low calorie sweetener. In order to study the intermolecular interactions in the prepolymerization mixture between the monomer and the template (LAA)/non-template (DAA), a computational approach was developed. It was based on the binding energy of the complex between the template and functional monomer. The results demonstrate that electrostatic in-teractions primarily guide the imprinting protocol. The MIP was able to selectively and specifically take up LAA from aqueous solution, human blood serum and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique to detect the amino acid, LAA in the presence of various interfer-rants, in different kinds of matrices is presented.展开更多
Biodegradable poly(alc-alt-Asp) was synthesized by ring-opening polymerization of the monomer 3-(S)-[(benzyloxycarbonyl)methyl] -morpholine-2, 5-dione and subsequent catalytic hydrogenation. Copolymers of the monomer ...Biodegradable poly(alc-alt-Asp) was synthesized by ring-opening polymerization of the monomer 3-(S)-[(benzyloxycarbonyl)methyl] -morpholine-2, 5-dione and subsequent catalytic hydrogenation. Copolymers of the monomer with glycolide, D,L-lactide and L-lactide were also prepared.展开更多
Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic...The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.展开更多
A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the ...A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).展开更多
Glycolic acid was polymerized under vacuum in the presence and absence of nano sized clay.The added clay catalyzed the condensation polymerization which can be confirmed by recording FTIR spectroscopy and intrinsic vi...Glycolic acid was polymerized under vacuum in the presence and absence of nano sized clay.The added clay catalyzed the condensation polymerization which can be confirmed by recording FTIR spectroscopy and intrinsic viscosity (Ⅳ)values.The relative intensity of C=O/CH is increased while increasing the amount of clay.DSC showed the appearance of multiple endotherms of poly(glycolic acid).TGA showed the percentage weight residue remain above 750℃for polymer-nano composite system was 21% and hence proved the fl...展开更多
The natural fiber/poly(lactic acid) (PLA) composites were prepared with ramie and jute short fiber as reinforcement and PLA as matrix. The mechanical and thermal properties of the composites were investigated. The res...The natural fiber/poly(lactic acid) (PLA) composites were prepared with ramie and jute short fiber as reinforcement and PLA as matrix. The mechanical and thermal properties of the composites were investigated. The results show that the properties of the composites are better than those of plain PLA. When the content of the fiber is 30%, the composites can get the best mechanical properties. The dynamic mechanical analysis results show that the storage moduli of the PLA/ramie and PLA/jute composites increase with respect to the plain PLA. The Vicat softening temperature of the composites is greatly higher than that of PLA. The results of thermogravimetric analysis show that adding fiber to the PLA matrix can improve the degradation temperature of PLA.展开更多
Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embe...Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.展开更多
A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive...A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA.展开更多
基金financially supported by the National Key R&D Program of China (2021YFA1501700)the National Science Foundation of China (22272114)+4 种基金the Fundamental Research Funds from Sichuan University (2022SCUNL103)the Funding for Hundred Talent Program of Sichuan University (20822041E4079)the NSFC (22102018 and 52171201)the Huzhou Science and Technology Bureau (2022GZ45)the Hefei National Research Center for Physical Sciences at the Microscale (KF2021005)。
文摘The conversion of waste polylactic acid(PLA)plastics into high-value-added chemicals through electrochemical methods is a promising and sustainable approach.However,developing efficient and highly selective catalysts for lactic acid oxidation reaction(LAOR)and understanding the reaction process are challenging.Here,we report the electrooxidation of waste PLA to acetate at a high current density of 100 mA cm-2 with high Faraday efficiency(~95%)and excellent stability(>100 h)over a nickel selenide nanosheet catalyst.In addition,a total Faraday efficiency of up to 190%was achieved for carboxylic acids,including acetic acid and formic acid,by coupling with the cathodic CO_(2) reduction reaction.In situ experimental results and theoretical simulations revealed that the catalytic activity center of LAOR was dynamically formed NiOOH species,and the surface-adsorbed SeO_(x) species accelerated the formation of Ni~(3+)species,thus promoting catalytic activity.The mechanism of lactic acid electrooxidation was further elucidated.Lactic acid was dehydrogenated to produce pyruvate first and then formed CH_3CO due to preferential C-C bond cleavage,resulting in the presence of acetate.This work demonstrated a sustainable method for recycling waste PLA and CO_(2) into high-value-added products.
文摘The nomenclature for compounds that are modified with isotopes is growing every day. Compounds can be modified with isotopes either individually, in a functional group or groups, or completely with all atomic centers of the element. This diversity of isotope-modified compounds increases the range of researches that can be studied using them. Compounds modified with isotopes of carbon-13 or nitrogen-15 can be converted into carbon monoxide, carbon dioxide and molecular nitrogen. Currently, only the average value of carbon-13 or nitrogen-15 isotopes can be determined. However, by directly determining the atomic share of these isotopes in organic compounds modified with isotopes, information about the isotopic centers of the element can be obtained. The atomic fraction of an element is defined as a single carbon or nitrogen isotope-modified center or centers, or all centers that are isotope-modified with that element at the same time. Carbon-13 or nitrogen-15 isotopes’ atomic fraction can be determined molecularly or with fragment ions of different elemental content, or both. This makes the method self-verifying, increasing the accuracy and reliability of the results obtained. Amino acids, such as asparagine, aspartic acid, methionine, and threonine, are essential for the human body. This proposed method of isotopic analysis will increase the possibilities for scientific research using these compounds.
基金supported by the National Natural Science Foundation of China(Grant No.U23A20591,52203201,52173149,and 81971174)the Youth Talents Promotion Project of Jilin Province(Grant No.202019)+1 种基金the Science and Technology Development Program of Jilin Province(Grant No.20210101114JC)Research Cooperation Platform Project of Sino-Japanese Friendship Hospital of Jilin University and Basic Medical School of Jilin University(Grant No.KYXZ2022JC04).
文摘Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood−brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金financially supported by National Natural Science Foundation of China (22068018)Yunnan Ten Thousand Talents Plan Young & Elite Talents Project。
文摘Drug-loaded microspheres are significant for the development of modern pharmaceutical products. It is well known that the taken of aspirin for long-term increases the risk of serious gastrointestinal complications, therefore a controllable delivery of aspirin is of importance to lighten those side effects. In this work, poly(lactic acid)(PLA) was chosen as the carrier to prepare PLA-aspirin microspheres by using the traditional and the improved solvent evaporation methods. It was found that no matter which experimental condition was, the encapsulation efficiency of aspirin was higher by using the improved method than that of the traditional method. Specifically, when the concentration of polyvinyl alcohol = 1%(mass),the polymer concentration = 1:20, the oil/water rate = 1:2.5, PLA-aspirin microspheres were obtained via the improved method with a high yield of 82.83%(mass) and an encapsulation efficiency of 44.09%. PLAaspirin microspheres were then prepared continuously using the improved method, which further enhanced the encapsulation efficiency to 54.56%. Approximate 85% aspirin released from microspheres within 7 days. Obvious degradation which was represented by reduction on hardness was observed by soaking microspheres in PBS for 60 days. This work is of interest because it provides a continuous route to prepare PLA-aspirin microspheres continuously with a high drug encapsulation efficiency.
基金Supported by Harbin Key Technologies R&D Program(No.2003AA4CS123).
文摘Polyaspartic acid(PASP)is suitable for the inhibition of scale deposition from water.To enhance its in- hibition efficiency,PASP was modified by reacting aspartic acid(Asp)with glutamic acid(Glu)to provide Asp-Glu copolymer under microwave irradiation.The influence of reaction parameters on conversion,molecular weight and inhibition of CaCO3 precipitation was investigated Infra-red.(IR), 1H nuclear magnetic resonance( 1H NMR)and 13C nuclear magnetic resonance( 13C NMR)spectroscopies were used to characterize the copolymer.The results show that copolymerization of aspartic acid and glutamic acid is catalyzed by a small amount of phosphorous acid (H3PO4)in solvent,the product conversion is 98.05%under the following conditions:the molar ratio of glutamic acid to reactant[Glu/(Asp+Glu)]is 0.3 and that of catalyst(Cat)to reactant[Cat/(Glu+Asp)]is 0.05(0.65ml H3PO4),the volume of solvent dimethylformamide is 16ml,the microwave power used is 720W and the reaction for 3 min.The weight average molecular weight of copolymer synthesized under these conditions is 2709 and the inhi- bition rate for CaCO3 is 97.75%.
文摘A biodegradable gene transfer vector, poly(ethylenimine)-grafted-poly[(aspartic acid)-co-lysine] has been developed by thermal polycondensation of aspartic acid and lysine, and branch poly(ethylenimine) (Mw less than 600) was grafted to the backbone. The polymer was characterized by 1H NMR. It appeared lower cytotoxity compared to poly(ethylenimine) (25KDa), which was quantified by MTT assay. Electrophoresis indicated that the polymer could retardate DNA at N/P ratio 1.2-1.8 (w/w). Transfection efficiency of the complexes was studied in NT2 cell lines. It was 1.5 fold higher than molecular weight PEI (Mw = 25KDa).
基金supported by The National Key Research and Development Program of China(2021YFB4001204)National Natural Science Foundation of China(22379143)。
文摘Acid loss and plasticization of phosphoric acid(PA)-doped high-temperature polymer electrolyte membranes(HT-PEMs)are critical limitations to their practical application in fuel cells.To overcome these barriers,poly(terphenyl piperidinium)s constructed from the m-and p-isomers of terphenyl were synthesized to regulate the microstructure of the membrane.Highly rigid p-terphenyl units prompt the formation of moderate PA aggregates,where the ion-pair interaction between piperidinium and biphosphate is reinforced,leading to a reduction in the plasticizing effect.As a result,there are trade-offs between the proton conductivity,mechanical strength,and PA retention of the membranes with varied m/p-isomer ratios.The designed PA-doped PTP-20m membrane exhibits superior ionic conductivity,good mechanical strength,and excellent PA retention over a wide range of temperature(80–160°C)as well as satisfactory resistance to harsh accelerated aging tests.As a result,the membrane presents a desirable combination of performance(1.462 W cm^(-2) under the H_(2)/O_(2)condition,which is 1.5 times higher than that of PBI-based membrane)and durability(300 h at 160°C and 0.2 A cm^(-2))in the fuel cell.The results of this study provide new insights that will guide molecular design from the perspective of microstructure to improve the performance and robustness of HT-PEMs.
基金supported financially from the National Natural Science Foundation of China (Grant No. 51308211)the State Key Laboratory of Urban Water Resource and Environment (HIT) (Grant No. ES200903)the Fundamental Research Funds for the Central Universities (Grant No. 2015MS63)
文摘Poly(aspartic acid-itaconic acid) copolymer was synthesized from aspartic acid(Asp) and itaconic acid(Ita) under microwave irradiation. The effects of microwave power, microwave irradiation time, molar ratio of itaconic acid and aspartic acid, catalyst type, catalyst and organic solvent content on copolymer yield, and the performance for inhibition of CaCO_3 fouling were investigated. It was found that the product yield achieved a highest record of 95% when the amount of catalyst Na H_2PO_4 was 0.012 mol, the amount of organic solvent propylene carbonate was 16 m L, the molar ratio of Asp/Ita was 3:1, the microwave output power was 1200 W and the irradiation time was 5.5 min. And the product performance for inhibition of calcium carbonate also reached a highest value of 94.38%. Structural characterization of the product showed that the product was the aspartic acid-itaconic acid copolymer.
文摘A nanostructured polymer film incorporated gold nanoparticles modified electrode was fabricated. The fabrication process involved a previous electropolymerization of aspartic acid and followed by the eletrodeposition of gold nano-particles on the glassy carbon electrode. The resulting poly (aspartic acid)-nanogold modified electrode (PAA- nano-Au/GCE) was characterized by scanning electron microscopy (SEM) and electrochemical impedance spectros-copy (EIS). A higher catalytic activity was obtained to electrocatalytic oxidation of dopamine (DA), ascorbic acid (AA) and uric acid (UA) due to the enhanced peak current and well-defined peak separations compared with three, bare GCE, PAA/GCE and nano-Au/GCE. Simultaneous determination of DA, AA, and UA were studied by voltammetry. The linear range of 5.0 × 10-7 - 1.0 × 10-4 M for DA, 5.0 × 10-6 - 2.0 × 10-3 M for AA and 5.0 × 10-6 - 1.0 × 10-3 M for UA was obtained. The detection limit was calculated for DA, AA and UA as being 6.5 × 10-8 M, 5.6 × 10-7 M and 3.0 × 10-7 M, respectively (S/N = 3). The practical application of the present modified electrode was demonstrated by the determination of DA, AA and UA in calf serum and fetal calf serum samples.
基金the Natural Science Foundation of Guangdong Province,No.07000059the Science and Technology Development Program of Guangzhou,No.2010Y1-C301the Science and Technology Development Program of Guangdong Province,No.2010B031600123
文摘Spinal dorsal horn N-Methyl-D-aspartic acid receptor 2B (NR2B) overexpression plays an important role in the production and maintenance of neuropathic pain. Because small interfering RNA (siRNA) can inhibit NR2B expression, siRNA may provide a novel approach to treat neuropathic pain and possibly nerve injury. However, an efficient and safe vector for NR2B siRNA has not been discovered. This study shows that a water soluble lipopolymer (WSLP) comprised of low molecular weight polyethyleneimine (PEI) and cholesterol can deliver siRNA targeting NR2B for the treatment of neuropathic pain. Results show that intrathecal injection of WSLP/siRNA complexes for 3 days inhibit NR2B gene expression with reductions in mRNA and protein levels by 59% and 54%, respectively, compared with control rats (P 〈 0.01). Injection of WSLP complexed with scrambled siRNA, or PEI with siRNA did not show this inhibitory effect. Moreover, injection of WSLP/siRNA complexes significantly relieved neuropathic pain at 3, 7, 12, and 21 days, while injection of WSLP with scrambled siRNA or PEI with siRNA did not. These results demonstrate that WSLP can efficiently deliver siRNA targeting NR2B in vivo and relieve neuropathic pain.
文摘Molecularly imprinted polymers selective for L-aspartic acid (LAA) have been prepared using the carboxy-betaine polymer bearing zwitterionic centres along the backbone. LAA is well known to promote good me-tabolism, treat fatigue and depression along with its significance in accurate age estimation in the field of forensic science and is an important constituent of ‘aspartame’, the low calorie sweetener. In order to study the intermolecular interactions in the prepolymerization mixture between the monomer and the template (LAA)/non-template (DAA), a computational approach was developed. It was based on the binding energy of the complex between the template and functional monomer. The results demonstrate that electrostatic in-teractions primarily guide the imprinting protocol. The MIP was able to selectively and specifically take up LAA from aqueous solution, human blood serum and certain pharmaceutical samples quantitatively. Hence, a facile, specific and selective technique to detect the amino acid, LAA in the presence of various interfer-rants, in different kinds of matrices is presented.
文摘Biodegradable poly(alc-alt-Asp) was synthesized by ring-opening polymerization of the monomer 3-(S)-[(benzyloxycarbonyl)methyl] -morpholine-2, 5-dione and subsequent catalytic hydrogenation. Copolymers of the monomer with glycolide, D,L-lactide and L-lactide were also prepared.
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
文摘The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.
基金This study was supported by the National Natural Science Foundation of China(No.30270395 and 30300084)the National"863"Project(No.2003AA32X210).
文摘A novel poly(d, /-lactic acid) (PDLLA) based biomimetic polymer was synthesized by grafting maleic anhydride, butanediamine and arg-gly-asp-ser (RGDS) peptides onto the backbone of PDLLA, aiming to overcome the acidity and auto-accelerating degradation of PDLLA during degradation and to improve its biospecificity and biocompatibility. The synthetic copolymer was characterized by FTIR, ^13C NMR and amino acid analyzer (AAA).
文摘Glycolic acid was polymerized under vacuum in the presence and absence of nano sized clay.The added clay catalyzed the condensation polymerization which can be confirmed by recording FTIR spectroscopy and intrinsic viscosity (Ⅳ)values.The relative intensity of C=O/CH is increased while increasing the amount of clay.DSC showed the appearance of multiple endotherms of poly(glycolic acid).TGA showed the percentage weight residue remain above 750℃for polymer-nano composite system was 21% and hence proved the fl...
基金Project(07XD14029) supported by the Program of Shanghai Subject Chief ScientistProject(075207046) supported by the Fund of Shanghai International Co-operation of Science and Technology+1 种基金Project(075211015) supported by the Key Science and Technologies Research and Development Program of Shanghai, ChinaProject(NCET-07-0620) supported by the Program for New Century Excellent Talents in University, China
文摘The natural fiber/poly(lactic acid) (PLA) composites were prepared with ramie and jute short fiber as reinforcement and PLA as matrix. The mechanical and thermal properties of the composites were investigated. The results show that the properties of the composites are better than those of plain PLA. When the content of the fiber is 30%, the composites can get the best mechanical properties. The dynamic mechanical analysis results show that the storage moduli of the PLA/ramie and PLA/jute composites increase with respect to the plain PLA. The Vicat softening temperature of the composites is greatly higher than that of PLA. The results of thermogravimetric analysis show that adding fiber to the PLA matrix can improve the degradation temperature of PLA.
基金Supported by the National Natural Science Foundation of China (No. 29976033) and the State Key Basic Science Research Project (G20000264).
文摘Proton conducting membranes composed of phosphotungstic acid (PWA) and poly(vinyl alcohol) (PVA)were prepared. Conductivity and Fourier transform infrared spectrometer(FTIR) measurements show that most ofthe acid embedded are stable in the PVA matrix when the membrane is immerged in water or methanol solution atroom temperature. Conductivity of the composite membranes scatters around 10-3 S.cm-1 at room temperature.The methanol crossover through the membranes is about an order of magnitude lower than that through Nafion117 membrane.
文摘A novel modified poly(dl-lactic acid) (PDLLA) was obtained by covalently grafting of maleic anhydride onto the backbone of PDLLA, attempting to improve PDLLA’s hydrophilicity and cell affinity and to provide reactive groups for further chemical modification. FTIR, 13C NMR and DSC were used to characterize the maleic anhydride-modified PDLLA.