Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium ...Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.展开更多
In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magneti...In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.展开更多
In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBT...In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBTNW under alkylpolyglycoside (APG) inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy (FrIR), the electron spectroscopy for chemical analysis (ESCA), the thermogravimetric (TG) and the scanning electron microscopy (SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatihility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.展开更多
A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithi...A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.展开更多
The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-63...The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.展开更多
The degradation of thermoplastic starch blend in the presence of commerciala-amylase and unpurified amylase of microbial origin was investigated.The blends consisting of thermoplastic starch and poly(butylene succinat...The degradation of thermoplastic starch blend in the presence of commerciala-amylase and unpurified amylase of microbial origin was investigated.The blends consisting of thermoplastic starch and poly(butylene succinate)have potential use in packaging applications thus,it is essential to establish susceptibility to degradation.Molar mass loss,gravimetric weight loss,and molecular structure were evaluated.The changes in the surface were observed with scanning electron microscopy.It was confirmed that there was a significant difference in gravimetric weight loss between the blends degraded in two different solutions.Unpurified enzymes of microbial origin,produced by Rhizopus oryzae cultures decomposed analyzed materials more efficiently than purified commercial ones.Moreover,it was proved that in applied conditions,the molar mass of PBS fraction did not change significantly.展开更多
Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is ...Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.展开更多
The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface...The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.展开更多
A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical ...A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.展开更多
The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC...The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC.展开更多
Poly ( butylene succinate ) ( PBS ), poly ( butylene terephthalate) (PBT) and poly (butylene succirmte-coterephthalate) (PBST)s were synthesized from dimethyl succinate and/or dimethyl terephthalate reacti...Poly ( butylene succinate ) ( PBS ), poly ( butylene terephthalate) (PBT) and poly (butylene succirmte-coterephthalate) (PBST)s were synthesized from dimethyl succinate and/or dimethyl terephthalate reacting with 1,4- butanediol through a process of transesterification/ polycondmsation in the presence of a high effective catalyst and characterized by means of GPC and DSC. The investigation was mainly focused on the influence of content of terephthalate units on the molecular weight and thermal properties of resulting polymers. It is revealed that the melting temperature and crystallinity of synthesized polymers decrease first with the increase of terephthalate units, then shift to rise gradually by DSC measurements. The results of Flory equation suggest sequence structure of PBSTs is random.展开更多
The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this w...The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this work aimed to study the effect of adding nanocellulose (nCE) with 1, 3, and 5 wt.% on poly(butylene adipate-co-butylene terephthalate) (PBAT). Thermal, structural, relaxometric, and rheological assessments were carried out. Quantitative evaluation of PBAT copolymer by high field NMR revealed 56.4 and 43.6 m.% of the butylene adipate and butylene terephthalate segments, respectively. WAXD measurement on the deconvoluted diffraction patterns identified that nCE was a mixing of Cellulose I and Cellulose II polymorph structures. At any composition, nanocellulose interfered with the PBAT crystallisation process. Also, a series of new PBAT crystallographic planes appeared as a function of nanocellulose content. PBAT hydrogen molecular relaxation varied randomly with nanocellulose content and had a strong effect on the hydrogen relaxation. PBAT cold crystallisation and melting temperatures (T<sub>cc</sub> and T<sub>m</sub>) were almost unchangeable. Although T<sub>cc</sub> did not change during polymer solidification from PBAT molten state, the sample’s degree of crystallinity varied with composition through the transcrystallization phenomenon. Nanocomposite thermal stability decreased possibly owing to the catalytic action of sulfonated amorphous cellulose chains. For the sample with 3 wt.% of nanocellulose, the highest values of complex viscosity and storage modulus were achieved.展开更多
In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration ...In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration and the phase transition of PBA,we performed two-dimensional(2D)correlation analysis.We found thatβ-form PBA crystal undergoes not only the melting process but also crystal transition upon the heating process.展开更多
A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) w...A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) were further synthesized by ring-opening polymerization in bulk at 150℃ using stannous octanoate as an initiator. The structures of the monomer and the polymers were confirmed by IR, IH-NMR, 13C-NMR, and GPC analysis.展开更多
In this study,a series of poly(butylene succinate)(PBSU)/gelatin composites were prepared by electrospinning.The morphology,physicochemical analysis,biomechanical properties,biocompatibility,and biodegradability of th...In this study,a series of poly(butylene succinate)(PBSU)/gelatin composites were prepared by electrospinning.The morphology,physicochemical analysis,biomechanical properties,biocompatibility,and biodegradability of the materials were evaluated.The results showed that the ultimate tensile stress of the vascular PBSU/gelatin grafts at(95/5),(90/10),(85/15),and(80/20)was(4.17±0.54)MPa,(3.81±0.44)MPa,2.94±0.69 MPa and 2.11±0.72 MPa respectively,and the burst pressure was(282.7±22.3)kPa,(295.3±3.9)kPa,(306.8±13.9)kPa and(307.6±9.0)kPa respectively,which met the requirements of tissue-engineered blood vessels.Furthermore,the addition of gelatin improved the hydrophilicity and degradation properties of PBSU,thus enhancing cell adhesion and promoting the inward growth of vascular smooth muscle cells.In summary,the research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.展开更多
Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(...Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.展开更多
This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butyle...This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil展开更多
The crystallization behavior,crystal morphology and form,and viscoelastic behavior of poly(butylene succinate)(PBS)and coir fiber/PBS composites(CPB)were investigated by differential scanning calorimetry(DSC),polarize...The crystallization behavior,crystal morphology and form,and viscoelastic behavior of poly(butylene succinate)(PBS)and coir fiber/PBS composites(CPB)were investigated by differential scanning calorimetry(DSC),polarized optical microscopy(POM),X-ray diffraction(XRD)and dynamic mechanical analysis(DMA).The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers.POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites.XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical.In addition,the storage modulus of CPB significantly increases comparing with the pure PBS.This predicted the dimensional stability and improved load-deformation temperature.In conclusion,the addition of coir fibers has a significant effect on the thermal properties of the matrix.展开更多
Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxan...Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxane) (PMPS) in the presence of dimethyl carbonate has been studied. Morphology, particle size, surface area and coating microstructure of modified silicas were analyzed by methods of transmission electron and atomic force microscopies, nitrogen adsorption-desorption data. Carbon contents in the grafted modifying layer of organosilicas were determined using IR spectroscopy and elemental analysis. Hydrophilic-hydrophobic properties of surface of the obtained modified silicas were estimated by measurements of contact angles of wetting. It was shown that modification of pyrogenic silicas with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate allows to obtain the homogeneous hydrophobic products and serve their nanodispersity.展开更多
Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/...Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.展开更多
基金supported by the National Key Research and Development Program of China(2022YFB4101800)National Natural Science Foundation of China(22278077,22108040)+2 种基金Key Program of Qingyuan Innovation Laboratory(00221004)Research Program of Qingyuan Innovation Laboratory(00523006)Natural Science Foundation of Fujian Province(2022J02019)。
文摘Dimethyl carbonate(DMC)is a crucial chemical raw material widely used in organic synthesis,lithiumion battery electrolytes,and various other fields.The current primary industrial process employs a conventional sodium methoxide basic catalyst to produce DMC through the transesterification reaction between vinyl carbonate and methanol.However,the utilization of this catalyst presents several challenges during the process,including equipment corrosion,the generation of solid waste,susceptibility to deactivation,and complexities in separation and recovery.To address these limitations,a series of alkaline poly(ionic liquid)s,i.e.[DVBPIL][PHO],[DVCPIL][PHO],and[TBVPIL][PHO],with different crosslinking degrees and structures,were synthesized through the construction of cross-linked polymeric monomers and functionalization.These poly(ionic liquid)s exhibit cross-linked structures and controllable cationic and anionic characteristics.Research was conducted to investigate the effect of the cross-linking degree and structure on the catalytic performance of transesterification in synthesizing DMC.It was discovered that the appropriate cross-linking degree and structure of the[DVCPIL][PHO]catalyst resulted in a DMC yield of up to 80.6%.Furthermore,this catalyst material exhibited good stability,maintaining its catalytic activity after repeated use five times without significant changes.The results of this study demonstrate the potential for using alkaline poly(ionic liquid)s as a highly efficient and sustainable alternative to traditional catalysts for the transesterification synthesis of DMC.
文摘In this article, the transesterification of poly(bisphenol A carbonate) (PC) with butylene terephthalate-caprolactone copolyester at a weight ratio 50/50 (BCL(21)) was thoroughly investigated by proton nuclear magnetic resonance spectroscopy ('H-NMR), in conjunction with a model compound. The 1 H-NMR results of the annealed blend PC/BCL(21) show that the formation of bisphenol A-terephthalate ester units is the same as in the annealed blend of PC with PBT, and the transesterification actually occurs between PC and butylene terephthalate (BT) segments in BCL(21). By comparison with the model compound bisphenol A dibutyrate, the new signal appearing at δ= 2.56 in the 1H-NMR spectrum confirms the existence of bisphenol A caprolactone ester units resulting from the exchange reaction of PC with caprolactone (CL) segments. 1H-NMR analysis of the transesterification rates reveals that the reaction of PC with aromatic and aliphatic segments in BCL(21) proceeds in a random manner. The miscibility of the blend PC/BCL(21) copolyester is favorable for the transesterification of PC with BT segments and CL segments.
文摘In order to improve the wettability and biocompatibility of the poly (butylene terephthalate) non-woven (PBTNW), the method of surface modification is used to graft copolymerization of chitosan (CS) onto the PBTNW under alkylpolyglycoside (APG) inducing. The product is thoroughly characterized with the Fourier transform infrared spectroscopy (FrIR), the electron spectroscopy for chemical analysis (ESCA), the thermogravimetric (TG) and the scanning electron microscopy (SEM). It is found that chitosan is successfully grafted onto PBTNW. In addition, the water contact angles, hemolysis tests and cytotoxicity evaluation tests show an improvement in wettability and biocompatihility as a result of graft copolymerization of chitosan. So the CS-grafted PBTNW exhibits greater superiority than the original PBTNW. The CS-grafted PBTNW can be a candidate for blood filter materials and other medical applications.
文摘A novel direct method for preparation of dimethyl carbonate and poly(ethylene terephthalate) from ethylene carbonate and dimethyl terephthalate has been demonstrated in the presence of metal acetate catalysts, lithium acetate dihydrate showed highest catalytic activity with 47.9% yield of dimethyl carbonate. This method was a green chemical process.
文摘The depolymerization of poly(bisphenol A carbonate)(PC) in subcritical and supercritical toluene was studied. The experimental parameters, which influence the depolymerization reaction such as temperature (570-633 K), pressure (4.0-7.0 MPa), reaction time (5-60 min), and toluene to PC weight ratio (3.0-11.0), were investigated, and the reaction products were determined by CrC, GC/MS and FT-IR spectrometer. It was found that the main product of the depolymerization reaction was bisphenol A(BPA). BPA accounted for over 55.7% of the depolymerization products at reaction temperature 613 K, pressure 5.0-6.0 MPa, reaction time 15 min and toluene/PC weight ratio of around 7.0.
文摘The degradation of thermoplastic starch blend in the presence of commerciala-amylase and unpurified amylase of microbial origin was investigated.The blends consisting of thermoplastic starch and poly(butylene succinate)have potential use in packaging applications thus,it is essential to establish susceptibility to degradation.Molar mass loss,gravimetric weight loss,and molecular structure were evaluated.The changes in the surface were observed with scanning electron microscopy.It was confirmed that there was a significant difference in gravimetric weight loss between the blends degraded in two different solutions.Unpurified enzymes of microbial origin,produced by Rhizopus oryzae cultures decomposed analyzed materials more efficiently than purified commercial ones.Moreover,it was proved that in applied conditions,the molar mass of PBS fraction did not change significantly.
基金the National High Technology Research and Development Program of China(No.2003AA321010).
文摘Dimethyl carbonate (DMC) and poly(ethylene terephthalate) was simultaneously synthesized by the transesterification of ethylene carbonate (EC) with dimethyl terephthalate (DMT) in this paper. This reaction is an excellent green chemical process without poisonous substance. Various alkali metals were used as the catalysts. The results showed alkali metals had catalytic activity in a certain extent. The effect of reaction condition was also studied. When the reaction was carded out under the following conditions: the reaction temperature 250℃, molar ratio of EC to DMT 3 : 1, reaction time 3h, and catalyst amount 0.004 (molar ratio to DMT), the yield of DMC was 68.9%.
基金This work was supported by the China National Distinguished Young Investigator Fund (29925413) and the NationalNatural Science Foundation of China (Project number 50303014).
文摘The surface phase separated structure of polyurethanes is always desired due to the advantage of better biocompatibility, compared with the homogeneous one. The key issue is how to control and characterize the surface morphology. In this work, we report the uppermost surface morphology of fluorinated poly(carbonate urethane)s with fluorinated side chains attached to hard segments as studied by AFM, XPS and contact angle measurement. A self-assembled micro-domain with the fluorinated side chain standing up on the uppermost surface has been proposed for polyurethane with higher fluorinated content, based on the result obtained.
文摘A low-molecular-weight polylactide-poly(butylene succinate)(PLA-PBS)copolymer was synthesized and incorporated into polylactide(PLA)as a novel toughening agent by solvent casting.The copolymer had the same chemical structure and function as PLA and it was used as a plasticizer to PLA.The copolymer was blended with PLA at a weight ratio from 2 to 10 wt%.Phase separation between PLA and PLA-PBS was not observed from their scanning electron microscopy(SEM)images and the crystal structure of PLA almost remained unchanged based on the X-ray diffraction(XRD)measurement.The melt flow index(MFI)of the blends was higher as the amount of PLA-PBS increased,indicating that the block copolymer did improve the mobility of the PLA chains.Moreover,tensile tests revealed that PLA with greater PLA-PBS copolymer exhibited higher elongation at break and it reached the maximum at 8 wt%of PLA-PBS in PLA,which was around 6 times higher than that of pure PLA.Furthermore,the glass transition temperature,measured by differential scanning calorimetry(DSC),markedly decreased with an increasing amount of the copolymer as it decreased from 61.2℃ for pure PLA to 41.3℃when it was blended with 10 wt%PLA-PBS copolymer.Therefore,the PLA-PBS copolymer was shown to be a promising plasticizer for fully biobased and toughened PLA.
文摘The completely degradable nanocomposites comprised of poly(propylene carbonate)(PPC) and organo-modified rectorite (OREC) were prepared by direct melt intercalation. The structure and mechanical properties of PPC/OREC nanocomposites were investigated. The wide-angle X-ray diffraction (WAXD) results show that the galleries distance of OREC is increased after PPC and OREC melt intercalation, which indicates that PPC molecular chain has intercalated into the layers of OREC. The PPC/OREC nanocomposites with lower OREC content show an increase in thermal decomposition temperature compared with pure PPC. The tensile strength and impact strength of PPC/OREC nanocomposites are improved. When the mass fraction of OREC is 4%, the tensile strength and impact strength of the PPC/OREC nanocomposite increase by 22.86% and 48.58% respectively, compared with pure PPC.
基金Supported by Shanghai Municipal Science and Technology Development Fund (No.045211052)
文摘Poly ( butylene succinate ) ( PBS ), poly ( butylene terephthalate) (PBT) and poly (butylene succirmte-coterephthalate) (PBST)s were synthesized from dimethyl succinate and/or dimethyl terephthalate reacting with 1,4- butanediol through a process of transesterification/ polycondmsation in the presence of a high effective catalyst and characterized by means of GPC and DSC. The investigation was mainly focused on the influence of content of terephthalate units on the molecular weight and thermal properties of resulting polymers. It is revealed that the melting temperature and crystallinity of synthesized polymers decrease first with the increase of terephthalate units, then shift to rise gradually by DSC measurements. The results of Flory equation suggest sequence structure of PBSTs is random.
文摘The concern with environmental preservation is a very current and relevant topic. Regarding polymers, the search for potentially ecofriendly matters has been the subject of scientific research. In this context, this work aimed to study the effect of adding nanocellulose (nCE) with 1, 3, and 5 wt.% on poly(butylene adipate-co-butylene terephthalate) (PBAT). Thermal, structural, relaxometric, and rheological assessments were carried out. Quantitative evaluation of PBAT copolymer by high field NMR revealed 56.4 and 43.6 m.% of the butylene adipate and butylene terephthalate segments, respectively. WAXD measurement on the deconvoluted diffraction patterns identified that nCE was a mixing of Cellulose I and Cellulose II polymorph structures. At any composition, nanocellulose interfered with the PBAT crystallisation process. Also, a series of new PBAT crystallographic planes appeared as a function of nanocellulose content. PBAT hydrogen molecular relaxation varied randomly with nanocellulose content and had a strong effect on the hydrogen relaxation. PBAT cold crystallisation and melting temperatures (T<sub>cc</sub> and T<sub>m</sub>) were almost unchangeable. Although T<sub>cc</sub> did not change during polymer solidification from PBAT molten state, the sample’s degree of crystallinity varied with composition through the transcrystallization phenomenon. Nanocomposite thermal stability decreased possibly owing to the catalytic action of sulfonated amorphous cellulose chains. For the sample with 3 wt.% of nanocellulose, the highest values of complex viscosity and storage modulus were achieved.
文摘In the present study,thermal behavior and crystal transition of pure poly(butylene adipate)(PBA)upon heating process were investigated by FTIR spectroscopy.To gain further insight into the thermal behavior alteration and the phase transition of PBA,we performed two-dimensional(2D)correlation analysis.We found thatβ-form PBA crystal undergoes not only the melting process but also crystal transition upon the heating process.
基金support of the National Natural Science Foundation of China(Grant No.20104005)
文摘A new six-membered cyclic carbonate monomer, 5-allyloxytrimethylene carbonate (ATMC), was synthesized starting from glycerol, and the corresponding polycarbonates, poly(5-allyloxytrimethylene carbonate)(PATMC) were further synthesized by ring-opening polymerization in bulk at 150℃ using stannous octanoate as an initiator. The structures of the monomer and the polymers were confirmed by IR, IH-NMR, 13C-NMR, and GPC analysis.
基金National Natural Science Foundation of China(31870966,81800931,81901062)National Key Research Development Program of China(2020YFA0803701,2017YFC1103504)Tianjin Science Foundation(20YFZCSY01020).
文摘In this study,a series of poly(butylene succinate)(PBSU)/gelatin composites were prepared by electrospinning.The morphology,physicochemical analysis,biomechanical properties,biocompatibility,and biodegradability of the materials were evaluated.The results showed that the ultimate tensile stress of the vascular PBSU/gelatin grafts at(95/5),(90/10),(85/15),and(80/20)was(4.17±0.54)MPa,(3.81±0.44)MPa,2.94±0.69 MPa and 2.11±0.72 MPa respectively,and the burst pressure was(282.7±22.3)kPa,(295.3±3.9)kPa,(306.8±13.9)kPa and(307.6±9.0)kPa respectively,which met the requirements of tissue-engineered blood vessels.Furthermore,the addition of gelatin improved the hydrophilicity and degradation properties of PBSU,thus enhancing cell adhesion and promoting the inward growth of vascular smooth muscle cells.In summary,the research in this paper provides a useful reference for the preparation and optimization of vascular scaffolds.
基金the financial support of the National Natural Science Foundation of China(No.20104005).
文摘Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.
文摘This is the first report on the PBS film degraded by any Bionectria ochroleuca fungal strain. The fungal strain BFM-X1 was isolated from an air environment on a vegetable field and was capable of degrading poly(butylene succinate) (PBS). The taxonomic identity of the strain BFM-X1 was confirmed to be Bionectria ochroleuca (showing a 99% similarity to B. ochroleuca in a BLAST search) through an ITS rRNA analysis. The bio-degradation of the PBS film by strain BFM-X1 was studied. Approximately 97.9% of the PBS film was degraded after strain BFM-X1 was inoculated at 28?C for 14 days. The degradation efficiency of BFM-X1 against PBS film under different soil environmental conditions was characterized. The results indicated that 62.78% of the PBS film loss was recorded in a 30-d experimental run in a sterile soil environment indoors. On adding strain BFM-X1 to a soil sample, the PBS degradation rate accelerated approximately fivefold. Furthermore, both temperature and humidity influenced the in situ degradation of the PBS by strain BFM-X1, and temperature may be the major regulating factor. The degradation was particularly effective in the warm season, with 90% of weight loss occurring in July and August. Scanning electron microscope observations showed surface changes to the film during the degradation process, which suggested that strain BFM-X1preferentially degraded an amorphous part of the film from the surface. These results suggested that the strain B. ochroleuca BFM-X1 was a new resource for degrading PBS film and has high potential in the bioremediation of PBS-plastic-contaminated soil
基金The Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QE075).
文摘The crystallization behavior,crystal morphology and form,and viscoelastic behavior of poly(butylene succinate)(PBS)and coir fiber/PBS composites(CPB)were investigated by differential scanning calorimetry(DSC),polarized optical microscopy(POM),X-ray diffraction(XRD)and dynamic mechanical analysis(DMA).The results of DSC measurement show that the crystallization temperature increases with the filling of coir fibers.POM images reveal that the spherulitic size and crystallization behavior of PBS are influenced by the coir fibers in the composites.XRD curves show that the crystal form of pure PBS and CPB are remaining almost identical.In addition,the storage modulus of CPB significantly increases comparing with the pure PBS.This predicted the dimensional stability and improved load-deformation temperature.In conclusion,the addition of coir fibers has a significant effect on the thermal properties of the matrix.
文摘Effect of the concentration ratios of organosiloxane/initiator and treatment temperature on the characteristics of hydrophobic products obtained by modification of surface of fumed silica with poly(methylphenylsiloxane) (PMPS) in the presence of dimethyl carbonate has been studied. Morphology, particle size, surface area and coating microstructure of modified silicas were analyzed by methods of transmission electron and atomic force microscopies, nitrogen adsorption-desorption data. Carbon contents in the grafted modifying layer of organosilicas were determined using IR spectroscopy and elemental analysis. Hydrophilic-hydrophobic properties of surface of the obtained modified silicas were estimated by measurements of contact angles of wetting. It was shown that modification of pyrogenic silicas with mixtures of poly(methylphenylsiloxane) and dimethyl carbonate allows to obtain the homogeneous hydrophobic products and serve their nanodispersity.
基金The National Natural Science Foundation of China (No. 20374032) and Tianjin Science and Technology Key Project (No. 05YFSZSF02200)
文摘Blends of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) and poly(butylene succinate-adipate) (PBSA), both biodegradable semicrystalline polyesters, were prepared with the ratio of PHBHHx/PBSA ranging from 80/20 to 20/80 by melt mixing method. Differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), dynamic mechanical thermal analysis (DMA), polarizing optical microscopy (POM) and wide angle X-ray diffractometer (WAXD) were used to study the miscibility and crystallization behavior of PHBHHx/PBSA blends. Experimental results indicate that PHBHHx is immiscible with PBSA as shown by the almost unchanged glass transition temperature and the biphasic melt.