The colored poly(m-phenylene isophthalamide)(PMIA)spinning solution was prepared by wet spinning and the die-swell of the colored PMIA spinning solution was done when it was extruded from a die in this experiment.The ...The colored poly(m-phenylene isophthalamide)(PMIA)spinning solution was prepared by wet spinning and the die-swell of the colored PMIA spinning solution was done when it was extruded from a die in this experiment.The properties and structures of colored PMIA fibers were characterized by scanning electron microscopy(SEM).The colored PMIA spinning dopes were first commixed in a pressurizer and then spun into a coagulation bath.The effect of die swell on the colored PMIA solution was resulted from the viscoelastic properties of the colored PMIA solution in the spinning process.The results showed that the die-swell ratio of the colored PMIA solution increased linearly with increasing the pressure and die length/diameter ratio(L/D).At the same pressure and L/D,the die-swell ratio decreased with the increase of filter layers and temperature.Also,optimized spinning parameters of the dopedyed PMIA fiber were obtained.展开更多
The feasibility of employing nanofiltration for the removal of chromium(VI) from wastewater was investigated. Poly (m-phenylene isophthalamide) (PMIA) was used to fabricate asymmetric nanofiltration membrane thr...The feasibility of employing nanofiltration for the removal of chromium(VI) from wastewater was investigated. Poly (m-phenylene isophthalamide) (PMIA) was used to fabricate asymmetric nanofiltration membrane through the phase-inversion technique. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the obtained membrane, and the both confirmed a much smoother surface which could reduce membrane fouling. The PMIA membrane showed different rejections to electrolytes in a sequence of Na2SO4 〉 MgSO4 〉 NaC1 〉 MgC12, which was similar to the sequence of the negatively charged nanofiltration membranes. Separation experiments on chromium(VI) solution were conducted at various operating conditions, such as feed concentration, applied pressure and pH. It is concluded that chromium(VI) could be effectively removed from chromiumcontaining wastewater by the PMIA nanofiltration membranes while maintaining their pollution resistance under alkaline condition.展开更多
文摘The colored poly(m-phenylene isophthalamide)(PMIA)spinning solution was prepared by wet spinning and the die-swell of the colored PMIA spinning solution was done when it was extruded from a die in this experiment.The properties and structures of colored PMIA fibers were characterized by scanning electron microscopy(SEM).The colored PMIA spinning dopes were first commixed in a pressurizer and then spun into a coagulation bath.The effect of die swell on the colored PMIA solution was resulted from the viscoelastic properties of the colored PMIA solution in the spinning process.The results showed that the die-swell ratio of the colored PMIA solution increased linearly with increasing the pressure and die length/diameter ratio(L/D).At the same pressure and L/D,the die-swell ratio decreased with the increase of filter layers and temperature.Also,optimized spinning parameters of the dopedyed PMIA fiber were obtained.
基金supported by the High Technology Research and Development Program (863) of China(No. 2007AA06Z339)the National Key Technologies R&D Program of China (No. 2006BAD01B02-02,2006BAJ08B00)
文摘The feasibility of employing nanofiltration for the removal of chromium(VI) from wastewater was investigated. Poly (m-phenylene isophthalamide) (PMIA) was used to fabricate asymmetric nanofiltration membrane through the phase-inversion technique. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to characterize the obtained membrane, and the both confirmed a much smoother surface which could reduce membrane fouling. The PMIA membrane showed different rejections to electrolytes in a sequence of Na2SO4 〉 MgSO4 〉 NaC1 〉 MgC12, which was similar to the sequence of the negatively charged nanofiltration membranes. Separation experiments on chromium(VI) solution were conducted at various operating conditions, such as feed concentration, applied pressure and pH. It is concluded that chromium(VI) could be effectively removed from chromiumcontaining wastewater by the PMIA nanofiltration membranes while maintaining their pollution resistance under alkaline condition.