A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio...A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials.展开更多
Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and en...Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries.展开更多
Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylen...Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions.展开更多
Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(...Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.展开更多
Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprof...Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprofen(IBF). To regulate the drug delivery, solid inclusion complexes(ICs) of IBF in β–cyclodextrin(β–CD) were prepared and added to the hydrogels. The ICs were prepared by the microwave irradiation method, which is more environmentally benign. The formation of IC was confirmed by various analytical techniques and the synthesized hydrogels were also characterized. Controlled release of drug was achieved from the hydrogels containing the ICs in comparison to the rapid release from hydrogels containing free IBF.The preliminary kinetic analysis emphasized the crucial role of β–CD in the drug release process that influences the polymer relaxation, thereby leading to prolonged release. The cytotoxicity assay validated the hydrogels as non-toxic in nature and hence can be utilized for controlled delivery of IBF.展开更多
Stannous-acetylacetonate was prepared efficiently and characterized by ^1H NMR and FT-IR. Its catalytic activity for poly(trimethylene terephthalate) (PTT) synthesis was investigated. By this catalyst, the degree ...Stannous-acetylacetonate was prepared efficiently and characterized by ^1H NMR and FT-IR. Its catalytic activity for poly(trimethylene terephthalate) (PTT) synthesis was investigated. By this catalyst, the degree of esterification of pure terephthalic acid was up to 91.7% after reaction at 260 ℃ for 2 h, while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polymerized at 260 ℃, 60 Pa for 2 h was 0.8816 dL/g and 17 mol/t,respectively. Stannous-acetylacetonate was more active and promising than tetrabutyl titanate and stannous octoate for PTT synthesis.展开更多
Glycolic acid was polymerized under vacuum in the presence and absence of nano sized clay.The added clay catalyzed the condensation polymerization which can be confirmed by recording FTIR spectroscopy and intrinsic vi...Glycolic acid was polymerized under vacuum in the presence and absence of nano sized clay.The added clay catalyzed the condensation polymerization which can be confirmed by recording FTIR spectroscopy and intrinsic viscosity (Ⅳ)values.The relative intensity of C=O/CH is increased while increasing the amount of clay.DSC showed the appearance of multiple endotherms of poly(glycolic acid).TGA showed the percentage weight residue remain above 750℃for polymer-nano composite system was 21% and hence proved the fl...展开更多
In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were...In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials.展开更多
Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as ...Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.展开更多
The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized ...The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry(DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface,but also the pha...展开更多
Poly(trimethylene terephthalate) (PTT) is an excellent fiber material. Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis (TGA), thermog...Poly(trimethylene terephthalate) (PTT) is an excellent fiber material. Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis (TGA), thermogravimetric analysis-Fourier transform infrared spectroscopy (TGA-FTIR) analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle. The PTTwithintrinsicviscosity(IV) of 0.74 dL/g has a maximum crystallinity of about 55% at 190 ℃, as demonstrated by DSC and XRD measurements consistently.展开更多
Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macr...Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the ATRP ofN-isopropylacrylamide (NIPAM) at 30℃ with CuCl/Me6TREN as a catalyst system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography (GPC) and ^1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI 〈 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry (DSC). As a result, the phase transition temperature of PEG45-b-(PNIPAM55)2 is higher than that of PNIPAM, however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular composition and architecture on the phase transition.展开更多
Poly( glycolic acid-lactic acid)( PGLA) threadembedding material was modified by chitosan coating which could improve the rigidity,hydrophilicity and moisture absorption of the material,and produced better stimulation...Poly( glycolic acid-lactic acid)( PGLA) threadembedding material was modified by chitosan coating which could improve the rigidity,hydrophilicity and moisture absorption of the material,and produced better stimulation effect. Thus,this kind of thread-embedding materials which can be buried into acupuncture points to produce a long-time stimulation is popular in the acupuncture and moxibustion therapies. The variation tendencies of diameter,weight, hydrophilicity, and flexibility of the samples under the change of chitosan coating concentration,coating time and coating times were studied respectively. The results showed that the hydrophilicity,weight,and rigidity after coating rose in a certain range with the increase of coating time,coating times and coating concentration. The coating time had little influence on the diameter of fiber.展开更多
Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein...Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein, we demonstrate the facile fabrication of antifouling polysulfone-block-poly(ethylene glycol)(PSF-b-PEG, SFEG)composite membranes. SFEG layer was coated onto macroporous supports and cavitated by immerging them in acetone/n-propanol following the mechanism of selective swelling induced pore generation. Thus-produced SFEG membranes possessed high permeance and excellent mechanical strength. Meanwhile, the structures and separation performances of the SFEG layers can be continuously tuned through simply changing swelling durations. More importantly, the hydrophilic PEG chains were spontaneously enriched onto the pore walls through swelling treatment, endowing intrinsic antifouling property to the SFEG membranes. Bovine serum albumin(BSA)/humic acid(HA) fouling tests proved the prominent fouling resistance of SFEG membranes, and the fouling resistance is expected to be long-standing because of the firm connection between PEG chains and PSF matrix by covalent bonding.展开更多
The aim of the present study was to develop a novel long-acting Poly(lactic-co-glycolic acid)(PLGA)-based microspheres formulation of Bisdemethoxycurcum(BDMC) by emulsionsolvent evaporation method. Meanwhile, the effe...The aim of the present study was to develop a novel long-acting Poly(lactic-co-glycolic acid)(PLGA)-based microspheres formulation of Bisdemethoxycurcum(BDMC) by emulsionsolvent evaporation method. Meanwhile, the effects of the volume ratio of the dispersed phase and continuous phase, the concentration of PLGA and PVA, the theoretical drug loading and stirring speed were investigated. The mean diameter of the microspheres was 8.5 μm and the size distribution was narrow. The encapsulation efficiency(EE) and drug loading efficiency(DLE) of BDME loaded PLGA microspheres(BDMC-PLGA-MS) was 94.18% and 8.14%,respectively. In an in vitro study of drug release, it can be concluded that the BDMC-PLGAMS exhibited sustained and long-term release properties for 96 h. Stability studies suggested that the microspheres we prepared had a very good stability. Furthermore, the results of an in vivo study indicated that the BDMC-PLGA-MS had sustained release effect and was mainly distributed in the lung tissue, and less distribution in other tissues, which indicated that microspheres could be an effective parenteral carrier for the delivery of BDMC in lung cancer treatment.展开更多
Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via...Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via ring-opening polymerization. The most appropriate technological conditions of synthesis of lactide were researched in the paper. The copolymers were measured by Infrared spectroscopy (IR) and <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR). The results proved that the lactide and PLA-PEG were synthesized successfully. Hydrophilic performance of the copolymer was measured by a water contact angle tester after prepared into a flat membrane. The water contact angle changed from 81.5? to 71.6?, which proved that the hydrophily of PLA-PEG was better than PLA.展开更多
The mechanism of the hydrophobized poly(ethylene glycol)(PEG)/K^(+) system inhibiting shale hydration was studied by laboratory experiment. The inhibition performance was evaluated through cuttings hot-rolling dispers...The mechanism of the hydrophobized poly(ethylene glycol)(PEG)/K^(+) system inhibiting shale hydration was studied by laboratory experiment. The inhibition performance was evaluated through cuttings hot-rolling dispersion, bentonite inhibition and contact angle tests. The inhibition became stronger as contact angle and PEG concentration increased. A modified cuttings hot-rolling dispersion experiment suggested that these molecular systems did not act through the thermally activated mud emulsion(TAME) mechanism. The interaction of the PEG/K^(+) with clay samples was investigated through adsorption studies and by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The adsorption isotherms showed that the presence of K^(+) increased the PEG affinity for the clay surface. This inhibition effect was accompanied by a reduction of the bentonite hydration with PEG adsorption, evidenced by FT-IR, TGA and differential thermogravimetric(DTG) curves. XRD patterns were conclusive in showing that the presence of K^(+) ions limited the expansion of the clay interlamellar region to only one PEG layer, and the terminal hydrophobic segments of the PEG chains turned out to be determinant in enhancement of the inhibitory efficiency. The cuttings hot-rolling dispersion was carried out on water-base drilling fluid with PEG/K^(+), which proved the inhibition performance of PEG/K^(+) in oil field drilling.展开更多
To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weig...To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change, mass loss, water uptake, etc. The results show that in dynamic system, significant mass loss begins until 10 d while mass loss does not begin until 30 d later, while weight-average molecular weight decreases observably at the beginning, and the appeasable mass loss happens in 20 d in static system, which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections, which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium, which make the hydrolytic cleavage of ester bonds inside specimen delayed.展开更多
Poly-dl-lactide-poly(ethylene glycol) (PELA) triblock copolymers were synthesized with lanthanum acetate as the initiator. PELA microspheres with entrapped Vibrio Cholera antigen and outer membrane protein (OMP) were ...Poly-dl-lactide-poly(ethylene glycol) (PELA) triblock copolymers were synthesized with lanthanum acetate as the initiator. PELA microspheres with entrapped Vibrio Cholera antigen and outer membrane protein (OMP) were prepared by a double emulsion W/O/W based on solvent extraction methods. The obtained microspheres showed smooth and spherical surface and their size varied between 0.5 and 5.0 mu m, which are suitable for oral targeting delivery system. The distribution tests in rabbits and mice through scanning electronic micrography and fluorescence microscope indicated that microspheres have successfully reached the immunization-related tissues, such as the liver, spleen and intestinal peyer's patches, following oral administration. The PELA microspheres were also evaluated as an efficient antigen delivery system by enhancing a higher protective ratio against live Vibrios Cholera.展开更多
Two-dimensional nuclear overhauser enhancement (2D NOESY)measurements show that sodium dodecyl sulfonate SDSN molecules co-aggregate with poly-ethylene glycol PEG in their aqueous solution at a concentration range of ...Two-dimensional nuclear overhauser enhancement (2D NOESY)measurements show that sodium dodecyl sulfonate SDSN molecules co-aggregate with poly-ethylene glycol PEG in their aqueous solution at a concentration range of SDSN between the so-called co-aggregation concentration (cac) and the. Normal critical micellar concentration (cmc). SDSN micelles are formed when the cmc of SDSN is reached with PEG uniformly distributed in the interior.展开更多
基金financially supported by Mahasarakham University。
文摘A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials.
基金the National Natural Science Foundation of China(Grant No.22179044).
文摘Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries.
基金Fujian External Cooperation project of Natural Science Foundation,China(No.2022I0042)。
文摘Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions.
基金the financial support of the National Natural Science Foundation of China(No.20104005).
文摘Novel amphiphilic triblock copolymer poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate)-block-poly(ethylene glycol)-block-poly(p-dioxanone-co-5-benzyloxytrimethylene carbonate) (p(PDO-co-BTMC)-b-PEG-b-p(PDO-co-BTMC)) was successfully synthesized using immobilized porcine pancreas lipase on porous silica particles (IPPL) as the catalyst for the fLrSt time. 1H NMR, 13C NMR and GPC analysis were used to confirm the structures of resulting copolymers. The molecular weight (Mn) of the copolymer with feed ratio of 69:20:11 (BTMC: PDO: PEG ) was 31300 g/mol and the polydispersity was 1.85, while the Mn decreased to 25000 g/mol and polydispersity of 1.93 with the feed ratio of 50:40:10.
文摘Hydrogels composed of poly(vinyl alcohol)(PVA) and poly(ethylene glycol)(PEG) were synthesized using glutaraldehyde as crosslinker and investigated for controlled delivery of the common anti-inflammatory drug, ibuprofen(IBF). To regulate the drug delivery, solid inclusion complexes(ICs) of IBF in β–cyclodextrin(β–CD) were prepared and added to the hydrogels. The ICs were prepared by the microwave irradiation method, which is more environmentally benign. The formation of IC was confirmed by various analytical techniques and the synthesized hydrogels were also characterized. Controlled release of drug was achieved from the hydrogels containing the ICs in comparison to the rapid release from hydrogels containing free IBF.The preliminary kinetic analysis emphasized the crucial role of β–CD in the drug release process that influences the polymer relaxation, thereby leading to prolonged release. The cytotoxicity assay validated the hydrogels as non-toxic in nature and hence can be utilized for controlled delivery of IBF.
文摘Stannous-acetylacetonate was prepared efficiently and characterized by ^1H NMR and FT-IR. Its catalytic activity for poly(trimethylene terephthalate) (PTT) synthesis was investigated. By this catalyst, the degree of esterification of pure terephthalic acid was up to 91.7% after reaction at 260 ℃ for 2 h, while the intrinsic viscosity and content of terminal carboxyl groups of the corresponding PTT polymerized at 260 ℃, 60 Pa for 2 h was 0.8816 dL/g and 17 mol/t,respectively. Stannous-acetylacetonate was more active and promising than tetrabutyl titanate and stannous octoate for PTT synthesis.
文摘Glycolic acid was polymerized under vacuum in the presence and absence of nano sized clay.The added clay catalyzed the condensation polymerization which can be confirmed by recording FTIR spectroscopy and intrinsic viscosity (Ⅳ)values.The relative intensity of C=O/CH is increased while increasing the amount of clay.DSC showed the appearance of multiple endotherms of poly(glycolic acid).TGA showed the percentage weight residue remain above 750℃for polymer-nano composite system was 21% and hence proved the fl...
基金This work was supported by the National Basic Science Research and Development Grants (973) of China (No.G1999064705) and the National High Technology Project (863) of China (No. 2002AA326030).
文摘In order to improve the blood compatibility of silk fibroin (SF), poly(ethylene glycol) macromer (PEGM) in different amounts was added to the SF film to incorporate C=C group into the surface of blend films which were then modified by SO2 gas plasma treatment. ATR-FITR and XPS were used to analyze the chemical change which had occurred on the film's surface. When the content of sulfur on the surface of blend films surpasses 1.59%, the antithrombogenicity of plasma treated films increases remarkably due to surface sulfonation. This result implies that SF with blend of PEGM after SO2 plasma treatment have potential use for making blood-contacting biomaterials.
基金The authors are Indebted to the National Basic Science Rescarch and Development Grants(973)(No.1999054306).
文摘Poly (L-lactide)-poly(ethylene glycol) multiblock copolymers with predetermined block lengths were synthesized by polycondensation of PLA diols and PEG diacids. These copolymers presented special properties, such as better miscibility between the two components, low crystallinity and better hydrophilicity, which can be modulated by adjusting the block lengths of the two components.
基金Henan Innovation Project for University Prominent Research Talents(“HAIPURT”)program.
文摘The ternary hybrid films consisting of chitosan(CS),polyethylene glycol(PEG)and nano-sized silica which was surface-modified by amino groups(RNSA)were prepared.The structures of the blend membranes were characterized by attenuation total reflection-infrared spectroscopy(ATR-IR),X-ray diffraction(XRD),optical microscopy(OM)and differential scanning calorimetry(DSC).The results showed that the addition of silica affected not only the distribution and crystallinity of PEG on the sample surface,but also the pha...
基金the China High-Tech Development 863 Program(No.2007AA03Z217)Guangdong Province Sci,& Tech.Bureau(No.2006B 12401006,06300332,2007A090302040)+1 种基金Guangzhou Sci.& Tech.Bureau(No.2005U13D2031,2007Z2-D2031)Foshan Sci.& Tech.Bureau for financial support of this work.
文摘Poly(trimethylene terephthalate) (PTT) is an excellent fiber material. Its thermal degradation and isothermal crystalline behaviors were in this study investigated using thermogravimetric analysis (TGA), thermogravimetric analysis-Fourier transform infrared spectroscopy (TGA-FTIR) analysis, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The thermal degradation mechanism of PTT follows Mclafferty rearrangement principle. The PTTwithintrinsicviscosity(IV) of 0.74 dL/g has a maximum crystallinity of about 55% at 190 ℃, as demonstrated by DSC and XRD measurements consistently.
基金support from the National Natural Science Foundation of China(No. 20134020)the Visiting Scholar Project of Shandong Province of China(No.20081001)the Science Research Fund of Shandong Jiaotong University of China(No.Z200802)
文摘Novel Y-shaped block copolymers of poly(ethylene glycol) and poly(N-isopropylacrylamide), PEG-b-(PNIPAM)2, were successfully synthesized through atom transfer radical polymerization (ATRP). A difunctional macroinitiator was prepared by esterification of 2,2-dichloroacetyl chloride with poly(ethylene glycol) monomethyl ether (PEG). The copolymers were obtained via the ATRP ofN-isopropylacrylamide (NIPAM) at 30℃ with CuCl/Me6TREN as a catalyst system and DMF/H2O (v/v = 3:1) mixture as solvent. The resulting copolymers were characterized by gel permeation chromatography (GPC) and ^1H NMR. These block copolymers show controllable molecular weights and narrow molecular weight distributions (PDI 〈 1.15). Their phase transition temperatures and the corresponding enthalpy changes in aqueous solution were measured by differential scanning calorimetry (DSC). As a result, the phase transition temperature of PEG45-b-(PNIPAM55)2 is higher than that of PNIPAM, however, the corresponding enthalpy change is much lower, indicating the significant influence of the macromolecular composition and architecture on the phase transition.
基金Biomedical Textile Materials Science and Technology(111 Project),China(No.B07024)
文摘Poly( glycolic acid-lactic acid)( PGLA) threadembedding material was modified by chitosan coating which could improve the rigidity,hydrophilicity and moisture absorption of the material,and produced better stimulation effect. Thus,this kind of thread-embedding materials which can be buried into acupuncture points to produce a long-time stimulation is popular in the acupuncture and moxibustion therapies. The variation tendencies of diameter,weight, hydrophilicity, and flexibility of the samples under the change of chitosan coating concentration,coating time and coating times were studied respectively. The results showed that the hydrophilicity,weight,and rigidity after coating rose in a certain range with the increase of coating time,coating times and coating concentration. The coating time had little influence on the diameter of fiber.
基金Supported by the National Natural Science Foundation of China(21776126)the National Basic Research Program of China(2015CB655301)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20150063)partially supported by the Open Fund of State Key Laboratory of Separation Membranes and Membrane Processes(M1-201702).
文摘Fouling resistance of ultrafiltration(UF) membranes is critical for their long-term usages in terms of stable performance, so convenient approaches to prepare fouling-resistant membranes are always anticipated. Herein, we demonstrate the facile fabrication of antifouling polysulfone-block-poly(ethylene glycol)(PSF-b-PEG, SFEG)composite membranes. SFEG layer was coated onto macroporous supports and cavitated by immerging them in acetone/n-propanol following the mechanism of selective swelling induced pore generation. Thus-produced SFEG membranes possessed high permeance and excellent mechanical strength. Meanwhile, the structures and separation performances of the SFEG layers can be continuously tuned through simply changing swelling durations. More importantly, the hydrophilic PEG chains were spontaneously enriched onto the pore walls through swelling treatment, endowing intrinsic antifouling property to the SFEG membranes. Bovine serum albumin(BSA)/humic acid(HA) fouling tests proved the prominent fouling resistance of SFEG membranes, and the fouling resistance is expected to be long-standing because of the firm connection between PEG chains and PSF matrix by covalent bonding.
文摘The aim of the present study was to develop a novel long-acting Poly(lactic-co-glycolic acid)(PLGA)-based microspheres formulation of Bisdemethoxycurcum(BDMC) by emulsionsolvent evaporation method. Meanwhile, the effects of the volume ratio of the dispersed phase and continuous phase, the concentration of PLGA and PVA, the theoretical drug loading and stirring speed were investigated. The mean diameter of the microspheres was 8.5 μm and the size distribution was narrow. The encapsulation efficiency(EE) and drug loading efficiency(DLE) of BDME loaded PLGA microspheres(BDMC-PLGA-MS) was 94.18% and 8.14%,respectively. In an in vitro study of drug release, it can be concluded that the BDMC-PLGAMS exhibited sustained and long-term release properties for 96 h. Stability studies suggested that the microspheres we prepared had a very good stability. Furthermore, the results of an in vivo study indicated that the BDMC-PLGA-MS had sustained release effect and was mainly distributed in the lung tissue, and less distribution in other tissues, which indicated that microspheres could be an effective parenteral carrier for the delivery of BDMC in lung cancer treatment.
文摘Lactide was synthesized using lactic acid and stannous octoate as raw material and catalyst, respectively. Poly(lactic acid)-poly(ethylene glycol) (PLA-PEG) was prepared by lactide and poly (ethylene glycol) (PEG) via ring-opening polymerization. The most appropriate technological conditions of synthesis of lactide were researched in the paper. The copolymers were measured by Infrared spectroscopy (IR) and <sup>1</sup>H nuclear magnetic resonance (<sup>1</sup>H NMR). The results proved that the lactide and PLA-PEG were synthesized successfully. Hydrophilic performance of the copolymer was measured by a water contact angle tester after prepared into a flat membrane. The water contact angle changed from 81.5? to 71.6?, which proved that the hydrophily of PLA-PEG was better than PLA.
基金The authors gratefully acknowledge to ANP(Brazilian Petroleum National Agency)COLFUTURO(Foundation for the future of Colombia)for the financial support.
文摘The mechanism of the hydrophobized poly(ethylene glycol)(PEG)/K^(+) system inhibiting shale hydration was studied by laboratory experiment. The inhibition performance was evaluated through cuttings hot-rolling dispersion, bentonite inhibition and contact angle tests. The inhibition became stronger as contact angle and PEG concentration increased. A modified cuttings hot-rolling dispersion experiment suggested that these molecular systems did not act through the thermally activated mud emulsion(TAME) mechanism. The interaction of the PEG/K^(+) with clay samples was investigated through adsorption studies and by Fourier transform infrared spectroscopy(FT-IR), X-ray diffraction(XRD) and thermogravimetric analysis(TGA). The adsorption isotherms showed that the presence of K^(+) increased the PEG affinity for the clay surface. This inhibition effect was accompanied by a reduction of the bentonite hydration with PEG adsorption, evidenced by FT-IR, TGA and differential thermogravimetric(DTG) curves. XRD patterns were conclusive in showing that the presence of K^(+) ions limited the expansion of the clay interlamellar region to only one PEG layer, and the terminal hydrophobic segments of the PEG chains turned out to be determinant in enhancement of the inhibitory efficiency. The cuttings hot-rolling dispersion was carried out on water-base drilling fluid with PEG/K^(+), which proved the inhibition performance of PEG/K^(+) in oil field drilling.
基金Projects(2002AA326010 2004AA32G110) supported by the High-tech Research and Development Program of China Project ( 30470521) supported by the National Natural Science Foundation of China
文摘To understand their degradation mechanisms, PLGA (50:50) polymer films were prepared and eroded in the static and dynamic medium system. The degradation behavior was characterized through weight-average molecular weight change, mass loss, water uptake, etc. The results show that in dynamic system, significant mass loss begins until 10 d while mass loss does not begin until 30 d later, while weight-average molecular weight decreases observably at the beginning, and the appeasable mass loss happens in 20 d in static system, which suggests that the dynamic degradation rate is slower even than degradation in static medium. A mechanism was proposed that specimens in static medium take up water homogeneously and cause the polymer chains to degrade all over the specimen cross sections, which creates free carboxylic acid groups which lead to a decrease of pH value inside the swollen polymer and accelerate degradation of the polymer. While pH value inside polymer keeps constant in dynamic medium because of flowing of simulated medium, which make the hydrolytic cleavage of ester bonds inside specimen delayed.
基金The project was supported by the National Natural Science Foundation of China(No.29774034).
文摘Poly-dl-lactide-poly(ethylene glycol) (PELA) triblock copolymers were synthesized with lanthanum acetate as the initiator. PELA microspheres with entrapped Vibrio Cholera antigen and outer membrane protein (OMP) were prepared by a double emulsion W/O/W based on solvent extraction methods. The obtained microspheres showed smooth and spherical surface and their size varied between 0.5 and 5.0 mu m, which are suitable for oral targeting delivery system. The distribution tests in rabbits and mice through scanning electronic micrography and fluorescence microscope indicated that microspheres have successfully reached the immunization-related tissues, such as the liver, spleen and intestinal peyer's patches, following oral administration. The PELA microspheres were also evaluated as an efficient antigen delivery system by enhancing a higher protective ratio against live Vibrios Cholera.
文摘Two-dimensional nuclear overhauser enhancement (2D NOESY)measurements show that sodium dodecyl sulfonate SDSN molecules co-aggregate with poly-ethylene glycol PEG in their aqueous solution at a concentration range of SDSN between the so-called co-aggregation concentration (cac) and the. Normal critical micellar concentration (cmc). SDSN micelles are formed when the cmc of SDSN is reached with PEG uniformly distributed in the interior.