Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydrid...Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.展开更多
A series of hyperbranched poly(urea-urethane)s (HPUs) containing short fluoroalkyl chain and reactive groups (HPUFs) capable as hydrophobic and oleophobic coating materials were synthesized. The obtained polymers were...A series of hyperbranched poly(urea-urethane)s (HPUs) containing short fluoroalkyl chain and reactive groups (HPUFs) capable as hydrophobic and oleophobic coating materials were synthesized. The obtained polymers were characterized by FTIR(fouier transform-infrared spectroscopy), 1H NMR(nuclear magnetic resonance), 13C NMR, 19F NMR, GPC(gel permeation chromatography), TGA(thermogravimetric analyzer), and XPS(X-ray photoelectron spectroscopy) analyses. Highly hydrophobic and oleophobic cotton fabrics could be achieved from these fluorinated hyperbranched polymers by solution-immersion coating method. The static contact angles reached to 143°, 114°, and 92° for water, hexadecane, and decane, respectively. The water and oil repellency ratings were 90 and 6, respectively, and still kept 80 and 5, respectively, after 10 soaping cycles at 50℃.展开更多
PANCHI (poly(acrylonitrile)/chitosan) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the por...PANCHI (poly(acrylonitrile)/chitosan) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of poly(acrylonitrile) and PANCHI membranes were determined by SEM analyses It was found that the membrane coated with 1.0% chitosan shows the maximum reduced pore size. The amounts of the functional groups and the degree of hydrophilicity of PANCHI composite membranes were determined. Urease was covalently immobilized onto all kinds of PANCHI membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (92.96%) was measured for urease bound to PANCHI (1%) membranes. The basic characteristics of optimum conditions (pH and temperature), heat inactivation and storage stability of immobilized urease were determined. Immobilization improved the thermal, pH and storage stability of the enzyme. The obtained results show that the poly(acrylonitrile)/chitosan composite materials are suitable for urease immobilization.展开更多
The optimization of silicon sheet from powder (SSP) technology as polycrystalli ne silicon thin film (poly-CSiTF) solar cells' substrate materials is studied by orthogonal design experimental method. Based on tech...The optimization of silicon sheet from powder (SSP) technology as polycrystalli ne silicon thin film (poly-CSiTF) solar cells' substrate materials is studied by orthogonal design experimental method. Based on technological optimization of S SP prepared from electronic grade silicon powder, SSP solar cell devices with si mple structure are prepared and the effect of SSP substrate is discussed. Up to now, the conversion efficiency of the prepared solar cells on low purity SSP sub strate with fundamental structure has reached 8.25% (with area of 1cm×1cm).展开更多
A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n cop...A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.展开更多
Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of pos...Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials(cathode)due to sluggish diffusion of Zn2+in the solid inorganic frameworks.Here,we report a novel organic electrode material of poly 3,4,9,10-perylentetracarboxylic dianhydride(PPTCDA)/graphene aerogel(GA).The 3D interconnected porous architecture synthesized through a simple solvothermal reaction,where the PPTCDA is homogenously embedded in the GA nanosheets.The self-assembly of PPTCDA/GA coin-type cell will not only significantly improve the durability and extend lifetime of the devices,but also reduce the electronic waste and economic cost.The self-assembled structure does not require the auxiliary electrode and conductive agent to prepare the electrode material,which is a simple method for preparing the coin-type cell and a foundation for the next large-scale production.The PPTCDA/GA delivers a high capacity of≥200 m Ah g^–1 with the voltage of 0.0~1.5 V.After 300 cycles,the capacity retention rate still close to 100%.The discussion on the mechanism of Zn2+intercalation/deintercalation in the PPTCDA/GA electrode is explored by Fourier transform infrared spectrometer(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)characterizations.The morphology and structure of PPTCDA/GA are examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).展开更多
A series of fatty acid/poly methyl methacrylate(PMMA) shape-stabilized phase change materials(PCMs) have been prepared by bulk polymerization method.In the composite,fatty acid(capric acid,stearic acid,and their eutec...A series of fatty acid/poly methyl methacrylate(PMMA) shape-stabilized phase change materials(PCMs) have been prepared by bulk polymerization method.In the composite,fatty acid(capric acid,stearic acid,and their eutectic mixture) acts as core material and PMMA serves as matrix,which coats the fatty acid to prevent the leakage of melted fatty acid.The prepared shape-stabilized PCMs were characterized on the morphology,phase change behavior,chemical characterization and thermal properties.The results indicate that the composites with proper phase change temperature and latent heat are able to keep solid morphology in macro level during thermal storage process.Thermal cycling test also indicates that the composite PCMs have good thermal reliability.Moreover,thermal conductivity and thermal performance are investigated and the results show that the shape-stabilized PCMs have the higher thermal conductivity than fatty acid and exhibited good thermal performance in controlling the atmosphere temperature.展开更多
Soluble Poly(propargyl benzoate) (PPBT) with pi -conjugated structure was synthesized using a novel bis(triphenylphosphine)-bisacetylide palladium complex catalyst [Pd(PPh3)(2)(C equivalent to CCH2OOCPh)(2)] (PPB). An...Soluble Poly(propargyl benzoate) (PPBT) with pi -conjugated structure was synthesized using a novel bis(triphenylphosphine)-bisacetylide palladium complex catalyst [Pd(PPh3)(2)(C equivalent to CCH2OOCPh)(2)] (PPB). An interdigital gold electrode was covered by screen printing films of doped PPBT (DPPBT) to prepare a resistance-type humidity sensor, which exhibits electrical response towards relative humidity (RH%) variations in the range 11%-96%. PPBT shows promise as a new humidity-sensitive material.展开更多
Poly(p-diethynylbenzene) (PDEB) with improved solubility was synthesized using a novel catalyst bis(triphenylphosphine)bis(p-diethynylbenzene) nickel complex (NI-C). A surface acoustic wave (SAW) delay line oscillator...Poly(p-diethynylbenzene) (PDEB) with improved solubility was synthesized using a novel catalyst bis(triphenylphosphine)bis(p-diethynylbenzene) nickel complex (NI-C). A surface acoustic wave (SAW) delay line oscillator was covered by Langmuir-Blodgett (LB) films of resulting PDEB to prepare a humidity sensor, which was found to have high sensitivity and good repeatability. PDEB shows promise as a good humidity-sensitive material.展开更多
Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a ...Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).展开更多
3-Ethynyl-4-(trimethylsilyl)thiophene (1a) and 3-ethynyl-4-bromothiophene (1b) selectively undergo acetylene polymerizations in the presence of the MoCl5- and WCl6-Ph3SiH catalysts to give soluble, high-molecular-weig...3-Ethynyl-4-(trimethylsilyl)thiophene (1a) and 3-ethynyl-4-bromothiophene (1b) selectively undergo acetylene polymerizations in the presence of the MoCl5- and WCl6-Ph3SiH catalysts to give soluble, high-molecular-weight poly(thienylacetylenes) (2) (M-w up to 602000) in high yields (up to 100%). Light transmission spectra of THF solutions of 2 continuously red-shift with increasing concentration. The concentratochromism shows a logarithmic concentration dependence; that is, the optical transitions of 2 are predictably tunable by simply changing their concentrations.展开更多
Heteroatom-doped carbon materials have demonstrated great potential in the electrochemical reduction reaction of CO_(2)(CO_(2)RR)due to their versatile structure and function.However,rational structure control remains...Heteroatom-doped carbon materials have demonstrated great potential in the electrochemical reduction reaction of CO_(2)(CO_(2)RR)due to their versatile structure and function.However,rational structure control remains one challenge.In this work,we reported a unique carbon precursor of soft template-containing porous poly(ionic liquid)(PIL)that was directly synthesized via free-radical self-polymerization of ionic liquid monomer in a soft template route.Variation of the carbonization temperature in a direct pyrolysis process without any additive yielded a series of carbon materials with facile adjustable textural properties and N species.Significantly,the integration of soft-template in the PIL precursor led to the formation of hierarchical porous carbon material with a higher surface area and larger pore size than that from the template-free precursor.In CO_(2)RR to CO,the champion catalyst gave a Faraday efficiency of 83.0%and a current density of 1.79 mA·cm^(-2)at-0.9 V vs.reversible hydrogen electrode(vs.RHE).The abundant graphite N species and hierarchical pore structure,especially the unique hierarchical small-/ultramicropores were revealed to enable better CO_(2)RR performance.展开更多
Externally applied magnetic fields have been used in this study to fabricate bamboo-like iron nanowires with or without a layer of Poly(methyl methacrylate) (PMMA). The hybrid PMMA/Fe nanowires were synthesized via ha...Externally applied magnetic fields have been used in this study to fabricate bamboo-like iron nanowires with or without a layer of Poly(methyl methacrylate) (PMMA). The hybrid PMMA/Fe nanowires were synthesized via hard X-ray synchrotron radiation polymerization with various treatment parameters. The results of XRD show that an oxide layer formed on the surface of the iron nanowires. The Fe2O3 and Fe3O4 phases coexist in the iron nanowires without X-ray irradiation. After X-ray irradiation, the Fe2O3 phase transformed into Fe3O4, which stabilized the iron nanowires. The results of XAS proved this phase transformation. TGA analysis confirmed the thermal properties and solid contents in these specimens. Their ferromagnetic behaviors were examined by magnetic hysteresis measurement, which indicated that the magnetic and structural properties of the nanowires can be manipulated by irradiation treatment. This may lead to a novel synthesis for iron nanowires that can be used in high thermal efficiency hyperthermia therapy.展开更多
Poly(p-phenylene terephthalamide)(PPTA)pulp was prepared by polycondensation of the p-phenylene diamine(PPDA)with terephthaloyl chloride(TPC)in the completely anhydrous solvent system of N-methyl pyrrolidone(NMP)havin...Poly(p-phenylene terephthalamide)(PPTA)pulp was prepared by polycondensation of the p-phenylene diamine(PPDA)with terephthaloyl chloride(TPC)in the completely anhydrous solvent system of N-methyl pyrrolidone(NMP)having calcium chloride,in the presence of poly(vinyl pyrrolidone)(PVP)having a viscosity average molecular weight lower than 40 000.It was confirmed that the polycondensation could be accelerated,the inherent viscosity of the polymer could be increased,and the polymers could be fibrillated more easily by the addition of the PVP.FTIR and X-ray spectra proved that PVP had not combined into molecular chains of the resultant PPTA pulps.The morphology of the resultant pulps,the effect of viscosity average molecular weight,amount and adding mode of PVP on inherent viscosity,specific surface area,and mean length of the resultant pulps were discussed in detail.And the friction and wear properties of the compound reinforced by the resultant pulps were simply investigated.展开更多
To develop a new generation of absorbable fracture fixation devices with enhanced biocompatibility, the biodegradation mechanism and its influence on the cellular response at the tissue/implant interface of hydroxyapa...To develop a new generation of absorbable fracture fixation devices with enhanced biocompatibility, the biodegradation mechanism and its influence on the cellular response at the tissue/implant interface of hydroxyapatite/ poly DL lactide (HA/PDLLA) composites were investigated in vitro and in vivo.HA/PDLLA rods were immersed in phosphate buffered saline,or implanted in muscle and bony tissue for 52 weeks.Scanning electron microscopic and histological studies were done.The degradation rate was the slowest in vitro,slower in muscle tissue and fast in bone.In vitro, the composites degraded heterogeneously and a hollow structure was formed.In bone,the limited clearing capacity leads to the accumulation of oligomeric debris,which contribute totally to the autocatalytic effect.So,the fastest degradation and intense tissue response were seen.In muscle tissue,oligomeric debris migrated into vicinal fibers over a long distance from the original implant cavity and the tissue reactions were,however, quite moderate.For the same size organic/inorganic composite,the environment where it was placed is the major factor in determining its biodegradation process and cellular reaction.In living tissue,factors such as cells,enzymes and mechanical stress have an obvious influence on the biodegradation and biological process at the tissue/implant interface.The biocompatibility of the HA/PDLLA composites is enhanced with the incorporating of the resorbable HA microparticles.展开更多
Hybrid polymers, poly(vinyl pyrrolidone-co-isobutyl styryl polyhedral oligomeric silsesquioxanes)s (PVP-POSS) were synthesized by one step polymerization and characterized using GPC and DSC. Addition of POSS signifi...Hybrid polymers, poly(vinyl pyrrolidone-co-isobutyl styryl polyhedral oligomeric silsesquioxanes)s (PVP-POSS) were synthesized by one step polymerization and characterized using GPC and DSC. Addition of POSS significantly increases the Tg of polyvinylpyrrolidone at a fair high POSS content and obtained high molecular weight polymers with very narrow molecular distribution. The POSS content in the resulted hybrids can be controlled by varying the POSS feed ratio.展开更多
Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordi...Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordination polymers of pyridiae- 3-carboxylic acid, the transparent hybrid thick fihns composed of [ Eu( NIC )3 ]n ( [ Tb( NIC)3 ]n ) and poly ethyl mettuwrylate ( PEMA ) have been prepared. The luminescence properties and energy transfer of these polymeric composites were studied with absorption spectra, fluorescent excitation trod emission spectra in detail. All the hybrid thick films composed of terbium coordination polymer show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable sabstrate for the luminescence of terbium ions. In the range of camposing concentration of luminescent species (0.01,0.025,0.05,0.1 mmol /15 mL EMA ), emission intensities increase with the increasing of corresponding composing concentration and the concentration quenching effect does not take place.展开更多
Effects of low molecule polyamide (LMPA) and namometer SiO2 particles on the properties of the poly (MMA/ BA/MAA) adhesive for wearable and nonskid PVC (polyvinyl carbazole) materials were investigated. The expe...Effects of low molecule polyamide (LMPA) and namometer SiO2 particles on the properties of the poly (MMA/ BA/MAA) adhesive for wearable and nonskid PVC (polyvinyl carbazole) materials were investigated. The experimental results show that the shear strength of poly (MMA/BA/MAA)/LMPA is increased, when the LMPA is added into poly (MMA/BA/MAA). The optimum addition of LMPA is about 4 wt pct. By adding 3 wt pct nano-SiO2 into poly (MMA/BA/MAA)/LMPA adhesive, its properties such as the shear strength, thermal stability, wear resistance and sea waterproof resistance are increased too.展开更多
Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time...Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time-consuming and the prepared poly[Na_(x)(Ni-ett)]usually has poor crystallinity,which does not benefit for achieving high thermoelectric performance.Here,a new one-step solvothermal method under the high reaction temperature and high vapor pressure was developed to prepare poly[Na_(x)(Ni-ett)]with a quite short period.The experimental results show crystallinity and electrical conductivity are greatly enhanced as compared with those prepared by conventional solution method.As a result,a maximum ZT value of 0.04 was achieved at 440 K,which is about four times of the polymer prepared by the conventional solution method.This study may provide a new route to enhance the TE properties of n-type organic thermoelectric materials.展开更多
基金Project supported by the National Natural Science Foundation of China (No. 29874002) and the Outstanding Young Scientist Award from National Natural Science Foundation of China (No. 29825504)
文摘Mesoporous poly(styrene-co-maleic anhydride)/silica hybrid materials have been prepared. The synthesis was achieved by the HCl-catalyzed sol-gel reactions of tetraethyl orthosilicate (TEOS) and styrene-maleic anhydride copolymer in the presence of 3-aminopropyl triethoxysilane (APTES) as a coupling agent and citric acid as a nonsurfactant template or pore-forming agent, followed by ethanol extraction. Characterization results from nitrogen sorption isotherms and powder X-ray diffraction indicate that polymer-modified mesoporous materials with large specific surface areas (e.g. 900 m(2)/g) and pore volumes (e.g. 0.6 cm(3)/g) could be prepared. As the citric acid concentration is increased, the specific surface areas, pore volumes and pore diameters of the hybrid materials increase.
基金National Natural Science Foundation of China(No.21072028)Shanghai Municipal Scientific Committee,China(No.08JC1400400)
文摘A series of hyperbranched poly(urea-urethane)s (HPUs) containing short fluoroalkyl chain and reactive groups (HPUFs) capable as hydrophobic and oleophobic coating materials were synthesized. The obtained polymers were characterized by FTIR(fouier transform-infrared spectroscopy), 1H NMR(nuclear magnetic resonance), 13C NMR, 19F NMR, GPC(gel permeation chromatography), TGA(thermogravimetric analyzer), and XPS(X-ray photoelectron spectroscopy) analyses. Highly hydrophobic and oleophobic cotton fabrics could be achieved from these fluorinated hyperbranched polymers by solution-immersion coating method. The static contact angles reached to 143°, 114°, and 92° for water, hexadecane, and decane, respectively. The water and oil repellency ratings were 90 and 6, respectively, and still kept 80 and 5, respectively, after 10 soaping cycles at 50℃.
文摘PANCHI (poly(acrylonitrile)/chitosan) composite membranes were prepared. The chitosan layer was deposited on the surface as well as on the pore walls of the base membrane. This resulted in the reduction of the pore size of the membrane and in an increase of their hydrophilicity. The pore structure of poly(acrylonitrile) and PANCHI membranes were determined by SEM analyses It was found that the membrane coated with 1.0% chitosan shows the maximum reduced pore size. The amounts of the functional groups and the degree of hydrophilicity of PANCHI composite membranes were determined. Urease was covalently immobilized onto all kinds of PANCHI membranes using glutaraldehyde. Both the amount of bound protein and relative activity of immobilized urease were measured. The highest activity (92.96%) was measured for urease bound to PANCHI (1%) membranes. The basic characteristics of optimum conditions (pH and temperature), heat inactivation and storage stability of immobilized urease were determined. Immobilization improved the thermal, pH and storage stability of the enzyme. The obtained results show that the poly(acrylonitrile)/chitosan composite materials are suitable for urease immobilization.
文摘The optimization of silicon sheet from powder (SSP) technology as polycrystalli ne silicon thin film (poly-CSiTF) solar cells' substrate materials is studied by orthogonal design experimental method. Based on technological optimization of S SP prepared from electronic grade silicon powder, SSP solar cell devices with si mple structure are prepared and the effect of SSP substrate is discussed. Up to now, the conversion efficiency of the prepared solar cells on low purity SSP sub strate with fundamental structure has reached 8.25% (with area of 1cm×1cm).
文摘A new biomimetic bone tissue engineering scaffold material, nano-HAI PLGA-( PEG-Asp )n composite, was synthesized by a biologically inspired self-assembling approach. A novel biodegradable PLGA- ( PEG-Asp )n copolymer with pendant amine functional groups and enhanced hydrophilicity woo synthesized by bulk ring-opening copolymerization by DL-lactide( DLLA) and glycolide( GA ) with Aspartic acid ( Asp )-Polyethylene glycol(PEG) alt-prepolymer. A Three-dimensional, porous scaffold of the PLGA-( PEG- Asp)n copolymer was fabricated by a solvent casting , particulate leaching process. The scaffold woo then incubated in modified simulated body fluid (naSBF). Growth of HA nanocrystals on the inner pore surfaces of the porous scaffold is confirmed by calcium ion binding analyses, SEM , mass increooe meoourements and quantification of phosphate content within scaffolds. SEM analysis demonstrated the nucleation and growth of a continuous bonelike, low crystalline carbonated HA nanocrystals on the inner pore surfaces of the PLGA- ( PEG-Asp )n scaffolds. The amount of calcium binding, total mass and the mass of phosphate on experimental PLGA- ( PEG-Asp ) n scaffolds at different incubation times in mSBF was significantly greater than that of control PLGA scaffolds. This nano-HA/ PLGA-( PEG- Asp )n composite stunts some features of natural bone both in main composition and hierarchical microstrueture. The Asp- PEG alt-prepolymer modified PleA copolymer provide a controllable high surface density and distribution of anionic functional groups which would enhance nucleation and growth of bonelike mineral following exposure to mSBF. This biomimetic treatment provides a simple method for surface functionalization and sabsequent mineral nucleation and self-oosembling on bodegradable polymer scaffolds for tissue engineering.
基金supported by the National Natural Science Foundation of China(51672056)Excellent Youth Project of Natural Science Foundation of Heilongjiang Province of China(YQ2019B002)+1 种基金China Postdoctoral Science Foundation(2018M630307 and 2019T120220)Fundamental Research Funds for the Central Universities(HEUCFD201732)。
文摘Aqueous rechargeable zinc ion batteries are very attractive in large-scale storage applications,because they have high safety,low cost and good durability.Nonetheless,their advancements are hindered by a dearth of positive host materials(cathode)due to sluggish diffusion of Zn2+in the solid inorganic frameworks.Here,we report a novel organic electrode material of poly 3,4,9,10-perylentetracarboxylic dianhydride(PPTCDA)/graphene aerogel(GA).The 3D interconnected porous architecture synthesized through a simple solvothermal reaction,where the PPTCDA is homogenously embedded in the GA nanosheets.The self-assembly of PPTCDA/GA coin-type cell will not only significantly improve the durability and extend lifetime of the devices,but also reduce the electronic waste and economic cost.The self-assembled structure does not require the auxiliary electrode and conductive agent to prepare the electrode material,which is a simple method for preparing the coin-type cell and a foundation for the next large-scale production.The PPTCDA/GA delivers a high capacity of≥200 m Ah g^–1 with the voltage of 0.0~1.5 V.After 300 cycles,the capacity retention rate still close to 100%.The discussion on the mechanism of Zn2+intercalation/deintercalation in the PPTCDA/GA electrode is explored by Fourier transform infrared spectrometer(FT-IR),X-ray diffraction(XRD)and X-ray photoelectron spectroscopy(XPS)characterizations.The morphology and structure of PPTCDA/GA are examined by scanning electron microscopy(SEM)and transmission electron microscopy(TEM).
基金Key Projects in the National Science & Technology Pillar Program during the Eleventh Five-Year Plan Period (No.2006BAJ04A04)Liaoning Scientific Research Program of Colleges and Universities,China (No. 2008S190)
文摘A series of fatty acid/poly methyl methacrylate(PMMA) shape-stabilized phase change materials(PCMs) have been prepared by bulk polymerization method.In the composite,fatty acid(capric acid,stearic acid,and their eutectic mixture) acts as core material and PMMA serves as matrix,which coats the fatty acid to prevent the leakage of melted fatty acid.The prepared shape-stabilized PCMs were characterized on the morphology,phase change behavior,chemical characterization and thermal properties.The results indicate that the composites with proper phase change temperature and latent heat are able to keep solid morphology in macro level during thermal storage process.Thermal cycling test also indicates that the composite PCMs have good thermal reliability.Moreover,thermal conductivity and thermal performance are investigated and the results show that the shape-stabilized PCMs have the higher thermal conductivity than fatty acid and exhibited good thermal performance in controlling the atmosphere temperature.
文摘Soluble Poly(propargyl benzoate) (PPBT) with pi -conjugated structure was synthesized using a novel bis(triphenylphosphine)-bisacetylide palladium complex catalyst [Pd(PPh3)(2)(C equivalent to CCH2OOCPh)(2)] (PPB). An interdigital gold electrode was covered by screen printing films of doped PPBT (DPPBT) to prepare a resistance-type humidity sensor, which exhibits electrical response towards relative humidity (RH%) variations in the range 11%-96%. PPBT shows promise as a new humidity-sensitive material.
文摘Poly(p-diethynylbenzene) (PDEB) with improved solubility was synthesized using a novel catalyst bis(triphenylphosphine)bis(p-diethynylbenzene) nickel complex (NI-C). A surface acoustic wave (SAW) delay line oscillator was covered by Langmuir-Blodgett (LB) films of resulting PDEB to prepare a humidity sensor, which was found to have high sensitivity and good repeatability. PDEB shows promise as a good humidity-sensitive material.
基金Supported by the National Natural Science Foundation of China(21476065)the China National Tobacco Corporation
文摘Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).
基金This work was in part supported by the Earmarked Research Grants of the Hong Kong Research Grants Council (HKUST597/95P and CUHK77/931).
文摘3-Ethynyl-4-(trimethylsilyl)thiophene (1a) and 3-ethynyl-4-bromothiophene (1b) selectively undergo acetylene polymerizations in the presence of the MoCl5- and WCl6-Ph3SiH catalysts to give soluble, high-molecular-weight poly(thienylacetylenes) (2) (M-w up to 602000) in high yields (up to 100%). Light transmission spectra of THF solutions of 2 continuously red-shift with increasing concentration. The concentratochromism shows a logarithmic concentration dependence; that is, the optical transitions of 2 are predictably tunable by simply changing their concentrations.
基金support from the National Natural Science Foundation of China(Nos.22072065,U1662107,and 21476109)Six talent peaks project in Jiangsu Province(JNHB035)+3 种基金State Key Laboratory of Materials-Oriented Chemical Engineering(KL17-04)Jiangsu Provincial Science Foundation for Youths(SBK2020044703)the Project of Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)High-Performance Computing Center of Nanjing Tech University。
文摘Heteroatom-doped carbon materials have demonstrated great potential in the electrochemical reduction reaction of CO_(2)(CO_(2)RR)due to their versatile structure and function.However,rational structure control remains one challenge.In this work,we reported a unique carbon precursor of soft template-containing porous poly(ionic liquid)(PIL)that was directly synthesized via free-radical self-polymerization of ionic liquid monomer in a soft template route.Variation of the carbonization temperature in a direct pyrolysis process without any additive yielded a series of carbon materials with facile adjustable textural properties and N species.Significantly,the integration of soft-template in the PIL precursor led to the formation of hierarchical porous carbon material with a higher surface area and larger pore size than that from the template-free precursor.In CO_(2)RR to CO,the champion catalyst gave a Faraday efficiency of 83.0%and a current density of 1.79 mA·cm^(-2)at-0.9 V vs.reversible hydrogen electrode(vs.RHE).The abundant graphite N species and hierarchical pore structure,especially the unique hierarchical small-/ultramicropores were revealed to enable better CO_(2)RR performance.
文摘Externally applied magnetic fields have been used in this study to fabricate bamboo-like iron nanowires with or without a layer of Poly(methyl methacrylate) (PMMA). The hybrid PMMA/Fe nanowires were synthesized via hard X-ray synchrotron radiation polymerization with various treatment parameters. The results of XRD show that an oxide layer formed on the surface of the iron nanowires. The Fe2O3 and Fe3O4 phases coexist in the iron nanowires without X-ray irradiation. After X-ray irradiation, the Fe2O3 phase transformed into Fe3O4, which stabilized the iron nanowires. The results of XAS proved this phase transformation. TGA analysis confirmed the thermal properties and solid contents in these specimens. Their ferromagnetic behaviors were examined by magnetic hysteresis measurement, which indicated that the magnetic and structural properties of the nanowires can be manipulated by irradiation treatment. This may lead to a novel synthesis for iron nanowires that can be used in high thermal efficiency hyperthermia therapy.
文摘Poly(p-phenylene terephthalamide)(PPTA)pulp was prepared by polycondensation of the p-phenylene diamine(PPDA)with terephthaloyl chloride(TPC)in the completely anhydrous solvent system of N-methyl pyrrolidone(NMP)having calcium chloride,in the presence of poly(vinyl pyrrolidone)(PVP)having a viscosity average molecular weight lower than 40 000.It was confirmed that the polycondensation could be accelerated,the inherent viscosity of the polymer could be increased,and the polymers could be fibrillated more easily by the addition of the PVP.FTIR and X-ray spectra proved that PVP had not combined into molecular chains of the resultant PPTA pulps.The morphology of the resultant pulps,the effect of viscosity average molecular weight,amount and adding mode of PVP on inherent viscosity,specific surface area,and mean length of the resultant pulps were discussed in detail.And the friction and wear properties of the compound reinforced by the resultant pulps were simply investigated.
文摘To develop a new generation of absorbable fracture fixation devices with enhanced biocompatibility, the biodegradation mechanism and its influence on the cellular response at the tissue/implant interface of hydroxyapatite/ poly DL lactide (HA/PDLLA) composites were investigated in vitro and in vivo.HA/PDLLA rods were immersed in phosphate buffered saline,or implanted in muscle and bony tissue for 52 weeks.Scanning electron microscopic and histological studies were done.The degradation rate was the slowest in vitro,slower in muscle tissue and fast in bone.In vitro, the composites degraded heterogeneously and a hollow structure was formed.In bone,the limited clearing capacity leads to the accumulation of oligomeric debris,which contribute totally to the autocatalytic effect.So,the fastest degradation and intense tissue response were seen.In muscle tissue,oligomeric debris migrated into vicinal fibers over a long distance from the original implant cavity and the tissue reactions were,however, quite moderate.For the same size organic/inorganic composite,the environment where it was placed is the major factor in determining its biodegradation process and cellular reaction.In living tissue,factors such as cells,enzymes and mechanical stress have an obvious influence on the biodegradation and biological process at the tissue/implant interface.The biocompatibility of the HA/PDLLA composites is enhanced with the incorporating of the resorbable HA microparticles.
基金financial support by the National Natural Science Foundation of China(Grant No.50073001 and 90206014)the Key Research Project of Anhui Province,and the Outstanding Young Foundation of Anhui Province(04044060).
文摘Hybrid polymers, poly(vinyl pyrrolidone-co-isobutyl styryl polyhedral oligomeric silsesquioxanes)s (PVP-POSS) were synthesized by one step polymerization and characterized using GPC and DSC. Addition of POSS significantly increases the Tg of polyvinylpyrrolidone at a fair high POSS content and obtained high molecular weight polymers with very narrow molecular distribution. The POSS content in the resulted hybrids can be controlled by varying the POSS feed ratio.
文摘Europium and terbium coordination polymers of pyridine-3-carboxylic acid were in-situ composed with ethyt methacrylate ( EMA ). With the polymerization of EMA monomer and the formation of europium and terbium coordination polymers of pyridiae- 3-carboxylic acid, the transparent hybrid thick fihns composed of [ Eu( NIC )3 ]n ( [ Tb( NIC)3 ]n ) and poly ethyl mettuwrylate ( PEMA ) have been prepared. The luminescence properties and energy transfer of these polymeric composites were studied with absorption spectra, fluorescent excitation trod emission spectra in detail. All the hybrid thick films composed of terbium coordination polymer show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable sabstrate for the luminescence of terbium ions. In the range of camposing concentration of luminescent species (0.01,0.025,0.05,0.1 mmol /15 mL EMA ), emission intensities increase with the increasing of corresponding composing concentration and the concentration quenching effect does not take place.
文摘Effects of low molecule polyamide (LMPA) and namometer SiO2 particles on the properties of the poly (MMA/ BA/MAA) adhesive for wearable and nonskid PVC (polyvinyl carbazole) materials were investigated. The experimental results show that the shear strength of poly (MMA/BA/MAA)/LMPA is increased, when the LMPA is added into poly (MMA/BA/MAA). The optimum addition of LMPA is about 4 wt pct. By adding 3 wt pct nano-SiO2 into poly (MMA/BA/MAA)/LMPA adhesive, its properties such as the shear strength, thermal stability, wear resistance and sea waterproof resistance are increased too.
基金Fund by the Shanghai Municipal Natural Science Foundation(21ZR1473200)the National Natural Science Foundation of China(No.52072391 and 21905293)。
文摘Poly(nickel 1,1,2,2-ethenetetrathiolate)(poly[Na_(x)(Ni-ett)])is one of the most promising n-type organic thermoelectric materials which can be used in wearable devices.However,the conventional solution method is time-consuming and the prepared poly[Na_(x)(Ni-ett)]usually has poor crystallinity,which does not benefit for achieving high thermoelectric performance.Here,a new one-step solvothermal method under the high reaction temperature and high vapor pressure was developed to prepare poly[Na_(x)(Ni-ett)]with a quite short period.The experimental results show crystallinity and electrical conductivity are greatly enhanced as compared with those prepared by conventional solution method.As a result,a maximum ZT value of 0.04 was achieved at 440 K,which is about four times of the polymer prepared by the conventional solution method.This study may provide a new route to enhance the TE properties of n-type organic thermoelectric materials.