期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Characterization of 3D Printed Poly(3-Hydroxybutyric-Co-3-Hydroxyvalerate) by Fused Granular Fabrication through Thermal and Mechanical Analyses
1
作者 Lok-Ching Wu Cheng-Hao Lee +2 位作者 Yanming Wang Yaohui Liu Chi-Wai Kan 《Journal of Materials Science and Chemical Engineering》 2023年第12期54-63,共10页
Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a custo... Poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)] (PHBVs) copolymers are promising biopolymers, which could substitute petroleum-based plastics for various applications. PHB and PHBV pellets were processed on a customized 3D printer via Fused Granular Manufacturing (FGM) approach modified with a Mahor screw extruder. To anticipate the behaviour of PHBVs when transformed using conventional thermo-mechanical shaping processes, thermal and mechanical analyses were carried out in order to better understand the effect of annealing temperature on their crystallization behaviour and mechanical properties of PHB polymer and PHBV copolymer. The objectives of the present work were to propose an experimental strategy to study the melting and crystallization events, crystalline structure changes, and mechanical performances of both PHB homopolymer and PHBV copolymer according to identical thermal annealing treatments. A monitoring of 3D printed PHB and PHBV structures was achieved by coupling Differential Scanning Calorimetry (DSC) and tensile tests. . 展开更多
关键词 Additive Manufacturing 3D Printing Biodegradable Plastic Fused Gran-ular Manufacturing poly[R-3-hydroxybutyrate-co-(R-3-hydroxyvalerate)]
下载PDF
BIOSYNTHESIS AND THERMAL PROPERTIES OF POLY(3-HYDROXYBUTYRATE-co-3-HYDROXYVALERATE)WITH LARGE VARIETY OF HYDROXYVALERATE CONTENTS BY BACILLUS CEREUS
2
作者 严群 Chung HimYu Peter Hoi Fu Yu 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2007年第4期341-345,共5页
Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV ... Biosynthesis and thermal properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) with different HV (hydrovalerate) content produced by a Bacillus cereus strain were investigated. A large variety of HV contents (up to about 90 mol%) of PHBV could be produced by this strain. Combined nitrogen sources containing both yeast extract and ammonium sulphate were better for cell growth and polyhydroxyalkanoates (PHA) production than either yeast extract or ammonium sulphate alone. Propionic acid is more favorable for the production of HV content than that of valeric acid. Finally, thermal properties of PHBV produced by this strain are found close to the results of other groups. 展开更多
关键词 Bacillus cereus poly3-hydroxybutyrate-co-3-hydroxyvalerate BIOSYNTHESIS Thermal properties
下载PDF
STUDY ON BIODEGRADABILITY OF POLY (3-HYDROXYBUTYRATE-co-3-HYDROXYVALERATE)/ORGANOPHILIC MONTMORILLONITE NANOCOMPOSITES
3
作者 WANGShufang SONGCunjiang +5 位作者 CHENGuangxin LIUJing YANGChao ZHANGXihui GUOTianying ZHANGBanghua 《Chinese Journal of Reactive Polymers》 2004年第1期65-73,共9页
Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite (PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading metho... Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)/Organophilic montmorillonite (PHBV/OMMT) nanocomposites were prepared and the biodegradability of the PHBV/OMMT nanocomposites was studied by a cultivation degrading method in soil suspension. The relationship between structure and biodegradability of PHBV/OMMT nanocomposites was investigated. The results showed that the biodegradability of PHBV/OMMT nanocomposites decreased with increasing amount of OMMT and it was related to the number of PHBV degrading microorganisms in degradation environment, the anti-microbial property of OMMT and the degree of crystallinity of the nanocomposites. 展开更多
关键词 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Organophilic montmorillonite Biodegradability.
下载PDF
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) supports adhesion and migration of mesenchymal stem cells and tenocytes 被引量:3
4
作者 Alex J Lomas George GQ Chen +1 位作者 Alicia J El Haj Nicholas R Forsyth 《World Journal of Stem Cells》 SCIE CAS 2012年第9期94-100,共7页
AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal ste... AIM: To establish the potential of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) as a material for tendon repair. METHODS: The biocompatibility of PHBHHx with both rat tenocytes (rT) and human mesenchymal stem cells (hMSC) was explored by monitoring adhesive characteristics on films of varying weight/volume ratios coupled to a culture atmosphere of either 21% O2 (air) or 2% O2 (physiological normoxia). The diameter and stiffness of PHBHHx films was established using optical coherence tomography and mechanical testing, respectively. RESULTS: Film thickness correlated directly with weight/volume PHBHHx (r2 = 0.9473) ranging from 0.1 mm (0.8% weight/volume) to 0.19 mm (2.4% weight/volume). Film stiffness on the other hand displayed a biphasic response which increased rapidly at values > 1.6% weight/volume. Optimal cell attachment of rT required films of ≥ 1.6% and ≥ 2.0% weight/volume PHBHHx in 2% O2 and 21% O2 respectively. A qualitative adhesion increase was noted for hMSC in films ≥ 1.2% weight/volume, becoming significant at 2% weight/volume in 2% O2. An increase in cell adhesion was also noted with ≥ 2% weight/volume PHBHHx in 21% O2. Cell migration into films was not observed. CONCLUSION: This evaluation demonstrates that PHBHHx is a suitable polymer for future cell/polymer replacement strategies in tendon repair. 展开更多
关键词 MESENCHYMAL stem cell TENOCYTES polyHYDROXYALKANOATES Hypoxia poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)
下载PDF
Silk fibroins modify the atmospheric low temperature plasma-treated poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) film for the application of cardiovascular tissue engineering
5
作者 Huaxiao Yang Min Sun +2 位作者 Ping Zhou Luanfeng Pan Chungen Wu 《Journal of Biomedical Science and Engineering》 2010年第12期1146-1155,共10页
Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxyb... Tissue engineered scaffold is one of the hopeful therapies for the patients with organ or tissue damages. The key element for a tissue engineered scaffold material is high biocompatibility. Herein the poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) film was irradiated by the low temperature atmospheric plasma and then coated by the silk fibroins (SF). After plasma treatment, the surface of PHBHHx film became rougher and more hydrophilic than that of original film. The experiment of PHBHHx flushed by phosphate buffer solution (PBS) proves that the coated SF shows stronger immobilization on the plasma-treated film than that on the untreated film. The cell viability assay demonstrates that SF-coated PHBHHx films treated by the plasma significantly supports the proliferation and growth of the human smooth muscle cells (HSMCs). Furthermore, the scanning electron microscopy and hemotoylin and eosin (HE) staining show that HSMCs formed a cell sub-monolayer and secreted a large amount of extracellular matrix (ECM) on the films after one week's culture. The silk fibroins modify the plasma-treated PHBHHx film, providing a material potentially applicable in the cardiovascular tissue engi-neering. 展开更多
关键词 BIOCOMPATIBLE Cardiovascular Tissue Engineering Low Temperature Plasma poly (3-hydroxybutyrate-co-3-Hydroxyhexanoate) (PHBHHx) Silk Fibroin
下载PDF
The Effects of Accelerated Photooxidation on Molecular Weight and Thermal and Mechanical Properties of PHBV/Cloisite 30B Bionanocomposites 被引量:1
6
作者 Kahina Iggui Mustapha Kaci +1 位作者 Nicolas Le Moigne Anne Bergeret 《Journal of Renewable Materials》 SCIE 2018年第3期288-298,共11页
The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B(3 wt%)bionanocomposites are investigated herein.Through size exclusion chromat... The effects of accelerated photooxidation on the molecular weight and thermal and mechanical properties of Cast PHBV and PHBV/Cloisite 30B(3 wt%)bionanocomposites are investigated herein.Through size exclusion chromatography(SEC)analysis,a significant decrease in both weight and number average molecular weights was observed for all irradiated samples over time,resulting from the chain scission mechanism.Differential scanning calorimetry(DSC)data indicated a decrease in degree of crystallinity and melting temperature after UV exposure,with the appearance of double melting peaks related to the changes in the crystal structure of PHBV.Thermal stability,tensile and thermo-mechanical properties were also reduced consecutively in photooxidation,being more pronounced for Cast PHBV.This study shows that the incorporation of Cloisite 30B in PHBV provides a better resistance to photooxidation in comparison with the neat polymer. 展开更多
关键词 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) organo-modified montmorillonite BIONANOCOMPOSITES accelerated photooxidation and degradation
下载PDF
The Effects of Gamma Irradiation on Molecular Weight, Morphology and Physical Properties of PHBV/Cloisite 30B Bionanocomposites
7
作者 Kahina Iggui Mustapha Kaci +2 位作者 Mohamed Mahlous Nicolas Le Moigne Anne Bergeret 《Journal of Renewable Materials》 SCIE 2019年第9期807-820,共14页
In this paper,the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)and PHBV/Cloisite 30B(C30B)(3 wt%)bionanocomposite prepared by melt compounding,were evaluated at various doses,... In this paper,the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)and PHBV/Cloisite 30B(C30B)(3 wt%)bionanocomposite prepared by melt compounding,were evaluated at various doses,i.e.,5,15,20,50 and 100 kGy at room temperature in air.Changes in molecular weight,morphology and physical properties were investigated.The study showed that the main degradation mechanism occurring in gamma irradiation in both Cast PHBV and C-PHBV/3C30B bionanocomposite is chain scission,responsible for the decrease of molecular weight.Differential scanning calorimetry(DSC)data indicated a regular decrease in crystallization temperature,melting temperature and crystallinity index for all irradiated samples with increasing the dose.Further,DSC thermograms of both Cast PHBV and PHBV bionanocomposite exhibited double melting peaks due probably to changes in the PHBV crystal structure.Tensile and DMA data showed a reduction in Young’s modulus,strength,elongation at break and storage modulus with the radiation dose;the decrease was however more pronounced for Cast PHBV.The morphological damages were much less pronounced for the PHBV bionanocomposite sample compared to Cast PHBV,for which some irregularities and defects were observed at 100 kGy.This study highlighted the ability of C30B to counterbalance the detrimental effect of radiolytic degradation on the functional properties of PHBV up to 100 kGy,thus acting as a potential anti-rad. 展开更多
关键词 poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(phbv) bionano-composite cloisite 30B gamma irradiation degradation
下载PDF
Evaluation of Biodegradation in Aqueous Medium of Poly(Hydroxybutyrate-Co-Hydroxyvalerate)/Carbon Nanotubes Films in Respirometric System
8
作者 Larissa Stieven Montagna Isabela CÉSAR Oyama +3 位作者 Rita de CÁSSIA Barbosa Camargo Lamparelli Ana Paula Silva THAIS Larissa do Amaral Montanheiro Ana Paula Lemes 《Journal of Renewable Materials》 SCIE 2019年第2期117-128,共12页
Biodegradable polymers have been increasingly used for scientific and commercial applications because they are similar to some conventional thermoplastics and exhibit the ability of self-degradation.Poly(3-hydroxybuty... Biodegradable polymers have been increasingly used for scientific and commercial applications because they are similar to some conventional thermoplastics and exhibit the ability of self-degradation.Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)nanocomposites films with 1 and 2 wt% of carbon nanotubes(CNT)were prepared by solution mixing,followed by solvent evaporation.In this work,PHBV/CNT nanocomposites were submitted to biodegradation in an aqueous medium for 34 days through a respirometric system.Then,the PHBV films were analyzed by the CO2 production and mineralization as a response of a microbial attack,which was monitored by back titration during all the experiment.The films were also characterized by measuring the weight loss;crystallinity was evaluated by differential scanning calorimetry(DSC)and the surface morphology by scanning electron microscopy(SEM).By analyzing the weight loss of the films,it was observed that adding CNT increases the resistance to biodegradation process.The obtained values of CO2 production and mineralization of the samples,as well as the values of weight loss,showed that the biodegradation of PHBV/CNT nanocomposites was minor in comparison to neat PHBV.The addition of CNT in PHBV matrix influences the surface morphology,causing the presence of cavities and an increase of roughness. 展开更多
关键词 poly(3-hydroxybutyrate-co-3-hydroxyvalerate) carbon nanotube nanocomposites biodegradation in aqueous medium
下载PDF
Nanofibrous nerve conduits for repair of 30-mm-long sciatic nerve defects 被引量:1
9
作者 Esmaeil Biazar Saeed Heidari Keshel +4 位作者 Majid Pouya Hadi Rad Melody Omrani Nava Mohammad Azarbakhsh Shirin Hooshmand 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第24期2266-2274,共9页
It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve... It has been confirmed that nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit can promote peripheral nerve regeneration in rats. However, its efficiency in repair of over 30-mm-long sciatic nerve defects needs to be assessed. In this study, we used a nanofibrous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nerve conduit to bridge a 30-mm-long gap in the rat sciatic nerve. At 4 months after nerve conduit implantation, regenerated nerves were macroscopi- cally observed and histologically assessed. In the nanofibrous graft, the rat sciatic nerve trunk had been reconstructed by restoration of nerve continuity and formation of myelinated nerve fiber. There were Schwann cells and glial cells in the regenerated nerves. Masson's trichrome staining showed that there were no pathological changes in the size and structure of gastrocnemius muscle cells on the operated side of rats. These findings suggest that nanofibrous poly(3-hydroxybutyrate-co-3- hydroxyvalerate) nerve conduit is suitable for repair of long-segment sciatic nerve defects. 展开更多
关键词 neural regeneration peripheral nerve injury sciatic nerve artificial conduit NANOFIBER poly3-hydr-oxybutyrate-co-3-hydroxyvalerate macroscopic observation HISTOLOGY grants-supported paper NEUROREGENERATION
下载PDF
PHBV结晶行为调控与相变机理的研究进展
10
作者 缪璐璐 董正梅 +3 位作者 谢国炎 吕沙峰 朱繁强 邹专勇 《现代纺织技术》 北大核心 2023年第4期119-129,共11页
聚羟基丁酸戊酸酯共聚酯(PHBV)材料是一种可生物降解聚合物,但存在脆性大、韧性差、热稳定性差等诸多问题,在纺织材料加工和应用方面受到了局限。针对性进行结晶调控是改善PHBV材料的脆性问题的有效途径,据此对国内外相关研究进展进行... 聚羟基丁酸戊酸酯共聚酯(PHBV)材料是一种可生物降解聚合物,但存在脆性大、韧性差、热稳定性差等诸多问题,在纺织材料加工和应用方面受到了局限。针对性进行结晶调控是改善PHBV材料的脆性问题的有效途径,据此对国内外相关研究进展进行了综述。阐述了PHBV的晶体结构特点以及聚合单体含量对材料结构和性能的影响;具体分析了PHBV结晶行为调控的几种方法,包括化学改性、物理共混改性、外力场诱导结晶,热处理和热应力拉伸;围绕PHBV存在的晶相转变行为,对β晶形成条件和现有的相变机理研究进行了梳理和分析。最后指出未来可综合考虑多种结晶调控方法间的协同效应,以期进一步扩大PHBV材料在纺织领域的应用。 展开更多
关键词 聚羟基丁酸戊酸酯共聚酯(phbv) 晶体结构 晶相转变 增韧改性 拉伸过程
下载PDF
以PHBV为碳源和生物膜载体的生物反硝化研究 被引量:17
11
作者 杨飞飞 吴为中 《中国环境科学》 EI CAS CSCD 北大核心 2014年第7期1703-1708,共6页
采用了一种可生物降解聚合物(BDP)聚羟基丁酸戊酸酯(PHBV)作为碳源和生物膜载体去除水体中的硝酸盐.结果表明:以PHBV为碳源和载体的反硝化系统启动时间短,硝酸盐氮(NO3--N)去除率高于93%;水力停留时间(HRT)对反硝化效果影响显著,但反硝... 采用了一种可生物降解聚合物(BDP)聚羟基丁酸戊酸酯(PHBV)作为碳源和生物膜载体去除水体中的硝酸盐.结果表明:以PHBV为碳源和载体的反硝化系统启动时间短,硝酸盐氮(NO3--N)去除率高于93%;水力停留时间(HRT)对反硝化效果影响显著,但反硝化系统对进水硝酸盐氮负荷具有较好的抗冲击能力;出水DOC(溶解性有机碳)浓度低于27.5mg/L,表明PHBV具有一定的控释碳源的能力;反应器不同高度脱氮效果差异显著,反应器中层(10-15cm)处获得最大NO3--N去除率. 展开更多
关键词 聚羟基丁酸戊酸酯(phbv) 碳源 生物膜载体 反硝化
下载PDF
微生物合成的β-羟基丁酸与β-羟基戊酸酯共聚物(PHBV)/有机化蒙脱土(OMMT)纳米复合材料生物降解性的研究 被引量:2
12
作者 王淑芳 刘静 +6 位作者 陈广新 杨超 郭天瑛 曾猛 张邦华 张斌 宋存江 《南开大学学报(自然科学版)》 CAS CSCD 北大核心 2005年第1期12-17,共6页
采用土壤悬浊培养降解实验法对溶液插层法制备的β-羟基戊酸酯共聚物/有机化蒙脱土(PHBV/ OMMT)的纳米复合材料进行了降解性能的研究;采用膜基稀释频度法(film-MPN method)研究了土壤悬浊液 中PHBV降解菌变化以及对纳米复合材料降解... 采用土壤悬浊培养降解实验法对溶液插层法制备的β-羟基戊酸酯共聚物/有机化蒙脱土(PHBV/ OMMT)的纳米复合材料进行了降解性能的研究;采用膜基稀释频度法(film-MPN method)研究了土壤悬浊液 中PHBV降解菌变化以及对纳米复合材料降解性能的影响;利用紫外分光光度法通过观察Bacillus Subtillus生 长规律研究了OMMT的抗菌性,影响降解性能变化的原因除了PHBV与OMMT间存在相互作用制约了 PHBV的链运动,降低了材料的透水性之外,还与材料的结晶度、OMMT的抗菌性,环境的降解菌数以及复合材 料的插层结构等因素有关. 展开更多
关键词 β-羟基丁酸与β-羟基戊酸酯共聚物(phbv) 有机化蒙脱土(OMMT) 生物降解性
下载PDF
Preparation and characterization of icariin/PHBV drug delivery coatings on anodic oxidized titanium 被引量:1
13
作者 戴瑶 刘海蓉 +1 位作者 夏磊磊 周征 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第11期2448-2453,共6页
A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating w... A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants. 展开更多
关键词 poly3-hydroxyburyrate-co-3-hydroxyvalerate)(phbv ICARIIN drug delivery coating TITANIUM
下载PDF
PHBV/HA骨修复材料的研究 被引量:2
14
作者 叶鹤荣 胡平 +2 位作者 杨冬芝 张凤波 齐庆磊 《功能高分子学报》 CAS CSCD 2004年第3期499-502,共4页
 利用硝酸钙与磷酸钠的水溶液制备羟基磷灰石(HA),同时在HA生成过程中与聚羟基丁酸 戊酸酯(PHBV)复合,探索了HA增强PHBV使之适于作为骨修复材料的一种新途径。结果表明,HA的均匀分散增进了复合材料中两相间的相互结合,能明显地提高复...  利用硝酸钙与磷酸钠的水溶液制备羟基磷灰石(HA),同时在HA生成过程中与聚羟基丁酸 戊酸酯(PHBV)复合,探索了HA增强PHBV使之适于作为骨修复材料的一种新途径。结果表明,HA的均匀分散增进了复合材料中两相间的相互结合,能明显地提高复合材料的力学性能。 展开更多
关键词 羟基磷灰石 聚羟基丁酸-戊酸酯 骨组织修复材料 力学性能
下载PDF
菌株Diaphorobacter polyhydroxybutyrativorans SL-205的反硝化特性 被引量:4
15
作者 张树松 樊月婷 +3 位作者 孙兴滨 仇天雷 高敏 王旭明 《中国环境科学》 EI CAS CSSCI CSCD 北大核心 2017年第9期3532-3539,共8页
为强化硝酸盐污染水的反硝化脱氮,研究了反硝化新菌株Diaphorobacter polyhydroxybutyrativorans SL-205~T利用不同碳源的缺氧反硝化性能,以及利用固体碳源聚羟基丁酸戊酸共聚酯(PHBV)的好氧反硝化特性.结果表明,在缺氧状态下,菌株SL-20... 为强化硝酸盐污染水的反硝化脱氮,研究了反硝化新菌株Diaphorobacter polyhydroxybutyrativorans SL-205~T利用不同碳源的缺氧反硝化性能,以及利用固体碳源聚羟基丁酸戊酸共聚酯(PHBV)的好氧反硝化特性.结果表明,在缺氧状态下,菌株SL-205~T分别以乙酸钠、琥珀酸钠和PHBV为唯一碳源时,硝酸盐去除率均达到99%以上;当初始硝态氮浓度为315mg/L时,PHBV的最适投加量为2.0g/L.菌株SL-205~T能利用PHBV进行好氧反硝化,当反应进行到36h时,硝酸盐去除率达到94.54%,平均反硝化速率为8.69mg/(L·h),并且在反应结束时没有亚硝酸盐和氧化亚氮的积累.以上结果为该菌株在废水脱氮处理中的应用奠定了实验基础. 展开更多
关键词 Diaphorobacter polyhydroxybutyrativorans SL-205T 硝酸盐 碳源 聚羟基丁酸戊酸共聚酯 好氧反硝化
下载PDF
Effects of Quenching Temperature and Time on Pore Diameter of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) Porous Scaffolds and MC3T3-E1 Osteoblast Response to the Scaffolds
16
作者 奚静 李静 +3 位作者 朱琳 公衍道 赵南明 张秀芳 《Tsinghua Science and Technology》 SCIE EI CAS 2007年第4期366-371,共6页
Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were prepared by thermally inducing phase separation (TIPS) for bone reconstruction. Scanning electron microscopy and porosity measurements were u... Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) scaffolds were prepared by thermally inducing phase separation (TIPS) for bone reconstruction. Scanning electron microscopy and porosity measurements were used to analyze the structure and properties of the scaffolds. The pore diameter of the scaffolds could be easily controlled by changing the quenching temperature and time. The biocompatibility was assessed by examining the proliferation and morphology of MC 3T3-E1 osteoprogenitor cells seeded on the scaffolds. Cultures grown in the presence of a source of phosphate ions showed the formation of a mineralized extracellular matrix. The results indicate that PHBHHx scaffolds prepared using TIPS are a promising candidate for bone reconstruction. 展开更多
关键词 poly3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) MC 3T3-E1 osteoblast polymerscaffold bone reconstruction
原文传递
不动杆菌Acinetobacter sp.TAC-1利用聚(3-羟基丁酸酯-co-3-羟基戊酸酯)的碳代谢机理 被引量:1
17
作者 刘欢 陈旺 +3 位作者 谭森文 梁思雨 杨晨曦 张千 《生物工程学报》 CAS CSCD 北大核心 2023年第11期4663-4681,共19页
为阐明异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification,HN-AD)菌株不动杆菌(Acinetobactersp.)TAC-1利用聚(3-羟基丁酸酯-co-3-羟基戊酸酯)[poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV]的碳代谢途... 为阐明异养硝化-好氧反硝化(heterotrophic nitrification-aerobic denitrification,HN-AD)菌株不动杆菌(Acinetobactersp.)TAC-1利用聚(3-羟基丁酸酯-co-3-羟基戊酸酯)[poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV]的碳代谢途径,以乙酸钠(sodium acetate,SOA)为对照,考察TAC-1菌株基因水平上存在的碳水化合物代谢通路。全基因组测序结果表明,TAC-1菌株中存在gltA、icd、sucAB、acs和pckA等碳水化合物代谢酶编码基因;KEGG通路数据库注释进一步证实TAC-1菌株存在糖酵解途径(glycolyticpathway,EMP)、磷酸戊糖途径(pentosephosphate pathway,PPP)、乙醛酸循环(glyoxylate cycle,GAC)和三羧酸循环(tricarboxylic acid cycle,TCA cycle)等碳水化合物代谢通路;不同碳源的代谢物差异表达,进一步证实TAC-1菌利用PHBV的碳代谢途径为:PHBV(通过磷酸戊糖途径)→葡萄糖酸盐(通过糖酵解途径)→乙酰辅酶A(进入三羧酸循环)→CO_(2)+H_(2)O(产生电子供体并释放能量)。本研究有望为基于HN-AD和固体碳源的脱氮新工艺的开发和应用提供理论依据。 展开更多
关键词 不动杆菌TAC-1 聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(phbv) 碳代谢机理 三羧酸循环
原文传递
Comparative evaluation of physico-chemical characteristics of biopolyesters P(3HB) and P(3HB-co-3HV) produced by endophytic Bacillus cereus RCL 02
18
作者 Ritupama Das Nayan Ranjan Saha +2 位作者 Arundhati Pal Dipankar Chattopadhyay Amal Kanti Paul 《Frontiers in Biology》 CAS CSCD 2018年第4期297-308,共12页
BACKGROUND: Bacteria endogenously residing within the plant tissues have attracted significant attention for production of biopolyester, polyhydroxyalkanoates (PHAs). Bacillus cereus RCL 02 (MCC 3436), a leaf end... BACKGROUND: Bacteria endogenously residing within the plant tissues have attracted significant attention for production of biopolyester, polyhydroxyalkanoates (PHAs). Bacillus cereus RCL 02 (MCC 3436), a leaf endophyte of oleaginous plant Ricinus communis L. accumulates 81% poly(3-hydroxybutyrate) [P(3HB)] of its cell dry biomass when grown in mineral salts (MS) medium. METHODS: The copolymer production efficiency of B. cereus RCL 02 was evaluated in valeric acid supplemented MS medium under biphasic cultivation condition. The copolymer so produced has been compared with the P(3HB) isolated from RCL 02 in terms of thermal, mechanical and chemical properties. RESULTS: Valeric acid supplementation as co-substrate in the medium has led to the production of copolymer of 3- hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) [P(3HB-co-3HV)] with 14.6 mol% 3HV. The identity of the polymers has been confirmed by X-ray diffraction (XRD) analysis, Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) spectroscopic studies. Thermogravimetric analysis (TGA) revealed that P(3HB) and P(3HB-co-3HV) films degraded at 278.66℃ and 273.49℃, respectively. The P(3HB-co-3HV) showed lower melting temperature (165.03℃) compared to P (3HB) (170.74℃) according to differential scanning calorimetry (DSC). Incorporation of 3HV monomers decreased the tensile strength (21.52 MPa), tensile modulus (0.93 GPa), storage modulus (E') (0.99 GPa) and increased % elongation at break (12.2%) of the copolyester. However, P(3HB) showed better barrier properties with lower water vapor transmission rate (WVTR) of 0.55 g-mil/100 in2/24 h. CONCLUSION: These findings emphasized exploration of endophytic bacterial strain (RCL 02) to produce biodegradable polyesters which might have significant potential for industrial application. 展开更多
关键词 poly3-hydroxybutyrate) poly3-hydroxybutyrate-co-3-hydroxyvalerate biodegradable polyester Bacillus cereus endophytic bacteria
原文传递
Doping Gd^(3+)Ion in PDA-PHBV Coating on Ti6Al4V Alloy for Enhancing Corrosion Resistance and Proliferation of Human Gingival Fibroblasts and Human Umbilical Vein Endothelial Cells
19
作者 Sijie Qin Xiongcheng Xu +3 位作者 Yanjin Lu Liu Li Tingting Huang Jinxin Lin 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第5期812-824,共13页
In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental imp... In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental implants.The corrosion resistance of Gd^(3+)-modified PHBV-coated Ti6Al4V was studied by electrochemical and immersion tests,respectively,whereas CCK-8 and RT-PCR evaluated the biocompatibility to human gingival fibroblasts(HGFs)and human umbilical vein endothelial cells(HUVECs).It was found that the Gd^(3+)-modified PHBV coating could enhance the corrosion resistance of Ti6Al4V.In vitro cell tests showed that PHBV coatings with and without Gd^(3+) addition could promote adhesion and proliferation of HGFs and HUVECs,showing a Gd^(3+) content-dependent manner.Moreover,it was found that the PDA-PHBV@1Gd showed the best proliferation to HGFs by up-regulating gene expressions of VINCULIN,ITGB1,and ITGA3,whereas the best response to HUVECs with the highest gene expression of eNOS and HIF-1αgenes was found in the PDA-PHBV@5Gd-coated group. 展开更多
关键词 Soft tissue sealing poly(3-hydroxybutyrate-3-hydroxyvalerate)(phbv) Gd^(3+) Corrosion resistance Human gingival fibroblasts
原文传递
聚(3-羟基丁酸酯-co-3-羟基戊酸酯)改性及纤维成形 被引量:7
20
作者 相恒学 王世超 +7 位作者 闻晓霜 李妍 周哲 陈龙 孙宾 俞昊 陈彦模 朱美芳 《高分子通报》 CAS CSCD 北大核心 2013年第10期136-144,共9页
聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)是一种微生物发酵生产的热塑性聚合物。从物理、化学改性及其纤维成形两个方面综述了PHBV的研究进展。PHBV的物理改性主要有无机纳米粒子共混体系(PHBV/iNPs)、有机纳米晶共混体系(PHBV/oNPs)、... 聚(3-羟基丁酸酯-co-3-羟基戊酸酯)(PHBV)是一种微生物发酵生产的热塑性聚合物。从物理、化学改性及其纤维成形两个方面综述了PHBV的研究进展。PHBV的物理改性主要有无机纳米粒子共混体系(PHBV/iNPs)、有机纳米晶共混体系(PHBV/oNPs)、高聚物共混体系(PHBV/Polymer)和绿色全降解共混体系;化学结构构筑主要包括接枝共聚改性、嵌段共聚改性、端基扩链改性等。从改性的手段及介质,分析了改性方法的优缺点。PHBV纤维的成形方法主要有熔融纺丝法、干法纺丝法及静电纺丝法。从PHBV纤维应用领域看,熔融纺纤维应用目标在于替代现有石油基相关产品,而静电纺纤维主要应用于开拓组织工程再生医学领域。最后,对PHBV今后的研究及发展提出了展望。 展开更多
关键词 聚(3-羟基丁酸酯-co-3-羟基戊酸酯)phbv 物理改性 化学改性 熔纺纺丝 静电纺丝
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部