An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicat...An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.展开更多
This paper focuses on the effects of the PSt content of polystyrene (PSt)-poly (dimethylsiloxane) (PDMS) interpenetrateing network (IPN) polymer membranes, on the pervaporation (PV) characteristics during the removal ...This paper focuses on the effects of the PSt content of polystyrene (PSt)-poly (dimethylsiloxane) (PDMS) interpenetrateing network (IPN) polymer membranes, on the pervaporation (PV) characteristics during the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05wt% benzene was permeated through the PSt-PDMS IPN membranes, they showed high benzene/water selectivity. Both the permeability and the benzene/water selectivity of the membranes were enhanced with increasing PSt content in the PSt-PDMS IPN membrane. The physicochemical mechanism of permeation and separation through the PSt-PDMS IPN membranes during PV is also discussed. The best normalized permeation rate, separation factor for benzene selectivity, and PV separation index of the PSt-PDMS IPN membrane were 1.27 × 10-6 kgm (m2hr)-1, 3293, and 41821, respectively. These PV characteristics are discussed from the viewpoint of the chemical and physical structure of the PSt-PDMS IPN membranes.展开更多
An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental anal...An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.展开更多
The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains are directly obtained from a priori probability P-alpha beta. Here the differing statistical weight matrices for the Si-O and O...The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains are directly obtained from a priori probability P-alpha beta. Here the differing statistical weight matrices for the Si-O and O-Si bonds are considered in calculating the configuration partition function. In the Bahar's model, as the same statistical weight matrices for the Si-O and O-Si bonds are adopted, there exists a large deviation of a priori probability P-alpha beta between the theory and the molecular dynamics (MD) simulation. Our model gives satisfactory agreement with experiment on the mean-square unperturbed end-to-end distance, the mean-square dipole moment and its temperature dependence, and the molar cyclization equilibrium constants for dimethylsiloxane oligomers. This new rotational isomeric state approach can be widely applied to other chains; such as -CH2-C[(CH2)(m)H](2)- and -O-Si[(CH2)(m)H](2) for arbitrary m.展开更多
Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard s...Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard segment of TPU and α,ω-dihydroxy-[poly(propyleneoxide)-poly (dimethylsiloxane)-poly(propyleneoxide)] (α,ω-dihydroxy-(PPO-PDMS-PPO)) was used to form soft segment of TPU, where the molar ratio of the –N=C=O/OH was 1.02 and the hard segment weight percentage was 30%. A series of TPUs were characterized by fourier transform infrared spectroscopy (FT-IR). The investigation of triblock oligomer’s PPO molecular weight impact on the derived TPU’s mechanical properties, thermal performance, surface water repellency and morphology performance was carried by Instron material tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angles (WCA), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDX) and wide angle X-ray diffraction (WAXD), respectively. FT-IR confirmed α,ω-dihydroxy-(PPO-PDMS-PPO) well cooperating into urethane structure and analyzed hydrogen bonding between N-H group with hard segment C=O group and N-H group with soft segment C-O-C group. DSC and WAXD results showed α,ω-dihydroxy-(PPO-PDMS-PPO) segments crystallization. SEM-EDX results showed that the presence of a spherulitic morphology, which arose from the crystallization of the PPO segments. The thermal properties measured by TGA and DSC were slightly affected by molecular weight of PPO and microphase separation. The weight loss of TPUs started between 294°C and 300°C, and Tg was in the range of -70°C to -107°C. TPU copolymers’ surface hydrophobicity property was excellent with WCA range of 95°?to 112°. TPU-3 with 1000 molecular weight PPO has the optimized mechanical properties with tensile strength 16.4 MPa and the modulus at 100% elongation 6.2 MPa and elongation 398%.展开更多
This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor ...This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor can convert external pressure or mechanical deformation into electrical signal to detect pressure and strain changes based on the coupling of triboelectrification and electrostatic induction.To enhance the performance of the pressure sensor,it consists of sub-500 nm resolution on the surface of elastic poly(dimethylsiloxane) sensitive layer and an indium tin oxide electrode thin film.When the pressure applied on the nanostructures layer,triboelectrostatic charges are induced.In the experiment,it measures up to sensitivity of 0.8 V/kPa at frequency of 5 Hz.This study results in potential applications such as wearable smart devices and skin-attachable diagnostics sensing systems.展开更多
A new chromatographic method is described for the determination of specific refractive index increment(dn/dc)μ at a constant chemical potential,for polymer/mixed solvent systems.In this method the(dn/dc)is obtain...A new chromatographic method is described for the determination of specific refractive index increment(dn/dc)μ at a constant chemical potential,for polymer/mixed solvent systems.In this method the(dn/dc)is obtained by measuring the areas of solvated-polymer peaks when the mixed solvent is used as an eluent.Values of(dn/dc)μ for the poly(dimethylsiloxane)(PDMS)-benzene-methanol system,determined by the proposed method are in good agreement with those determined by the conventional dialysis method.The new approach has the advantages of simplicity,fast speed,and high reproducibility.The experimental results for stearic acid-chloroform-methanol system show that this method can also be applied to nonpolymer/mixed solvent systems for the determination of(dn/dc)μ.展开更多
An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly...An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and injection cross channel. The operation of running buffer refreshing or channel cleaning was simplified by vacuuming one end of the tip and placing the other tip into the solution vial. Therefore, this fabrication method can be easily applied to most analytical laboratories economically without soft lithography and plasma bonding equipments. The attractive performance of the novel PDMS microchips has been demonstrated by using laser-induced fluorescence detection for separation of proteins. The addition of 0.04% Brij 35 in 0.04 mol/L phosphate buffer (pH 7.0) can reduce the adhesion of proteins in multienzyme tablet and make separation more easily. The electroosmotic flow (EOF) exhibits pH-independence in the range of 3-1 1 in dynamic modified microchannel.展开更多
Sulfate-reducing bacteria(SRB)has been pointed out as one of the causative agents of microbial induced corrosion in the marine environment.To address this problem,novel strategies are being experimented as against the...Sulfate-reducing bacteria(SRB)has been pointed out as one of the causative agents of microbial induced corrosion in the marine environment.To address this problem,novel strategies are being experimented as against the earlier methods which have been banned due to their toxic effects on useful aquatic lives.Thus,the aim of this study was to investigate the effect of non-toxic perfluorodecyltrichlorosilane(PFDTS)on resistance of hydrophobic poly(dimethylsiloxane)/phosphoric acid-treated zinc oxide(PDMS/PA-treated ZnO)coatings to SRB-induced biofouling and corrosion.The surface features of the coatings before and after exposure to SRB/NaCl solution were analyzed by scanning electron microscopy(SEM).Wettability of the coatings before and after exposure was also measured.The interaction of SRB with the coatings was investigated by FTIR spectroscopy.The resistance performance of the modified coatings against SRB-induced corrosion was monitored by electrochemical impedance spectroscopy(EIS).The EIS measurements revealed that 0.20 g PFDTS-based coating displayed highest corrosion resistance with impedance modulus of 6.301×10^10 after 15 d of exposure to SRB/NaCl medium.The results were corroborated by surface and chemical interaction analyses,and thus,indicate that 0.20 g PFDTSmodified PDMS/PA-treated ZnO coating has potentials for excellent SRB-induced corrosion resistance and anti-biofouling performance.展开更多
This article presents the fabrication and characterization of poly dimethylsiloxane/carbon nanofiber(CNF)-based nanocomposites.Although silica and carbon nanoparticles have been traditionally used to reinforce mechani...This article presents the fabrication and characterization of poly dimethylsiloxane/carbon nanofiber(CNF)-based nanocomposites.Although silica and carbon nanoparticles have been traditionally used to reinforce mechanical properties in PDMS matrix nanocom-posites,this article focuses on understanding their impacts on electrical and thermal properties.By adjusting both the silica and CNF concentrations,12 different nanocomposite formulations were studied,and the thermal and electrical properties of these materials were experimentally characterized.The developed nano-composites were prepared using a solvent-assisted method pro-viding uniform dispersion of the CNFs in the polymer matrix.Scanning electron microscopy was employed to determine the dispersion of the CNFs at different length scales.The thermal properties,such as thermal stability and thermal diffusivity,of the developed nanocomposites were studied using thermogravi-metirc and laser flash techniques.Furthermore,the electrical volume conductivity of each type of nanocomposite was tested using the four-probe method to eliminate the effects of contact electrical resistance during measurement.Experimental results showed that both CNFs and silica were able to impact on the overall properties of the synthesized PDMS/CNF nanocomposites.The developed nanocomposites have the potential to be applied to the development of new load sensors in the future.展开更多
Simultaneously introducing mechanochromic and self-healing properties into polymers is almost a field unexplored,and the integration of these capabilities in one material has important theoretical and substantial sign...Simultaneously introducing mechanochromic and self-healing properties into polymers is almost a field unexplored,and the integration of these capabilities in one material has important theoretical and substantial significance.In this paper,a mechanochromic poly(dimethylsiloxane)(PDMS)elastomer with self-healing ability and superior mechanical properties is first reported.Spiropyran mechanophore and reversible hydrogen bonds are incorporated into the system to realize multi-stimuliinduced color change and self-healing ability,respectively.Upon uniaxial stretching,heating or UV irradiation,the elastomer exhibits a reversible color variation from yellow to purple,which can recover rapidly by white light illumination.Its excellent tensile strength(10.5 MPa)and elongation at break(785%)are distinctive among PDMS elastomers with no fillers.After heat treatment at 60℃for 24 h,the self-healing efficiency of strength can achieve 92.1%.This novel robust PDMS elastomer holds great promise for applications in visualized stress/strain sensing,self-healing biomaterials and wearable devices.展开更多
文摘An integrated poly(dimethylsiloxane) (PDMS) microchip with two sharpened stretching has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and without injection cross-channel. Operations of running buffer refreshing or channel cleaning also becomes simple by vacuumed in one end and placed another tip into solution vial. The fabrication method can be easily applied in most analytical laboratories at low cost in the absence of soft lithography and plasma bonding equipments. Characteristics of the chips were tested and it can be used to separate fluorescence labeled molecules.
文摘This paper focuses on the effects of the PSt content of polystyrene (PSt)-poly (dimethylsiloxane) (PDMS) interpenetrateing network (IPN) polymer membranes, on the pervaporation (PV) characteristics during the removal of benzene from an aqueous solution of dilute benzene. When an aqueous solution of 0.05wt% benzene was permeated through the PSt-PDMS IPN membranes, they showed high benzene/water selectivity. Both the permeability and the benzene/water selectivity of the membranes were enhanced with increasing PSt content in the PSt-PDMS IPN membrane. The physicochemical mechanism of permeation and separation through the PSt-PDMS IPN membranes during PV is also discussed. The best normalized permeation rate, separation factor for benzene selectivity, and PV separation index of the PSt-PDMS IPN membrane were 1.27 × 10-6 kgm (m2hr)-1, 3293, and 41821, respectively. These PV characteristics are discussed from the viewpoint of the chemical and physical structure of the PSt-PDMS IPN membranes.
基金Supported by National 985 Project of China (No.985XK-015).
文摘An operational model is developed to evaluate and predict the permeation performance of mixed gas through poly(dimethylsiloxane) (PDMS) membranes by combining the ideal gas permeation model with the ex-perimental analysis of the mixed gas transport character. This model is tested using the binary and ternary mixed gas with various compositions through the PDMS membranes, and the predicted data of the permeation flux and the compositions of the permeated gas are in good agreement with the experimental ones, which indicates that the op-erational model is applicable for the evaluation of the permeation performance of mixed gas through PDMS mem-branes.
基金This research was financially supported by National Natural Science Foundation of China and the National Basic Research Project"Macromolecular Condensed State"from STCC.
文摘The intermolecular rotational potential energies for poly(dimethylsiloxane) (PDMS) chains are directly obtained from a priori probability P-alpha beta. Here the differing statistical weight matrices for the Si-O and O-Si bonds are considered in calculating the configuration partition function. In the Bahar's model, as the same statistical weight matrices for the Si-O and O-Si bonds are adopted, there exists a large deviation of a priori probability P-alpha beta between the theory and the molecular dynamics (MD) simulation. Our model gives satisfactory agreement with experiment on the mean-square unperturbed end-to-end distance, the mean-square dipole moment and its temperature dependence, and the molar cyclization equilibrium constants for dimethylsiloxane oligomers. This new rotational isomeric state approach can be widely applied to other chains; such as -CH2-C[(CH2)(m)H](2)- and -O-Si[(CH2)(m)H](2) for arbitrary m.
文摘Novel segmented thermoplastic polyurethane (TPU) copolymers were synthesized using two-step solventless bulk polymerization. 4,4’-methylenediphenyl diisocyanate (MDI) and 1,4-Butanediol (BDO) were used to form hard segment of TPU and α,ω-dihydroxy-[poly(propyleneoxide)-poly (dimethylsiloxane)-poly(propyleneoxide)] (α,ω-dihydroxy-(PPO-PDMS-PPO)) was used to form soft segment of TPU, where the molar ratio of the –N=C=O/OH was 1.02 and the hard segment weight percentage was 30%. A series of TPUs were characterized by fourier transform infrared spectroscopy (FT-IR). The investigation of triblock oligomer’s PPO molecular weight impact on the derived TPU’s mechanical properties, thermal performance, surface water repellency and morphology performance was carried by Instron material tester, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), water contact angles (WCA), scanning electron microscope and energy dispersive X-ray spectroscopy (SEM-EDX) and wide angle X-ray diffraction (WAXD), respectively. FT-IR confirmed α,ω-dihydroxy-(PPO-PDMS-PPO) well cooperating into urethane structure and analyzed hydrogen bonding between N-H group with hard segment C=O group and N-H group with soft segment C-O-C group. DSC and WAXD results showed α,ω-dihydroxy-(PPO-PDMS-PPO) segments crystallization. SEM-EDX results showed that the presence of a spherulitic morphology, which arose from the crystallization of the PPO segments. The thermal properties measured by TGA and DSC were slightly affected by molecular weight of PPO and microphase separation. The weight loss of TPUs started between 294°C and 300°C, and Tg was in the range of -70°C to -107°C. TPU copolymers’ surface hydrophobicity property was excellent with WCA range of 95°?to 112°. TPU-3 with 1000 molecular weight PPO has the optimized mechanical properties with tensile strength 16.4 MPa and the modulus at 100% elongation 6.2 MPa and elongation 398%.
基金supported by the National Natural Science Foundation of China (NSFC)(Grant number 51703227,C0025053,61605211,61504147,and 61775213)Sichuan Science and Technology Program (Grant number 2019YJ0014)the Instrument Development of Chinese Academy of Sciences,The National R&D Program of China (Grant number 2017YFC0804900),.
文摘This paper proposed a flexible pressure sensor based on poly(dimethylsiloxane) nanostructures film and report an efficient,simple,and low-cost fabrication strategy via soft nanoimprint lithography.The pressure sensor can convert external pressure or mechanical deformation into electrical signal to detect pressure and strain changes based on the coupling of triboelectrification and electrostatic induction.To enhance the performance of the pressure sensor,it consists of sub-500 nm resolution on the surface of elastic poly(dimethylsiloxane) sensitive layer and an indium tin oxide electrode thin film.When the pressure applied on the nanostructures layer,triboelectrostatic charges are induced.In the experiment,it measures up to sensitivity of 0.8 V/kPa at frequency of 5 Hz.This study results in potential applications such as wearable smart devices and skin-attachable diagnostics sensing systems.
基金Supported by the National Natural Science Foundation of China(No.20474040).
文摘A new chromatographic method is described for the determination of specific refractive index increment(dn/dc)μ at a constant chemical potential,for polymer/mixed solvent systems.In this method the(dn/dc)is obtained by measuring the areas of solvated-polymer peaks when the mixed solvent is used as an eluent.Values of(dn/dc)μ for the poly(dimethylsiloxane)(PDMS)-benzene-methanol system,determined by the proposed method are in good agreement with those determined by the conventional dialysis method.The new approach has the advantages of simplicity,fast speed,and high reproducibility.The experimental results for stearic acid-chloroform-methanol system show that this method can also be applied to nonpolymer/mixed solvent systems for the determination of(dn/dc)μ.
文摘An integrated poly(dirnethylsiloxane) (PDMS) microchip with two sharpened stretching tips for convenient sample injecting, running buffer refreshing and channel cleaning has been presented. The sample was directly introduced into the separation channel through the stretching inlet tip without complicated power switching supplies and injection cross channel. The operation of running buffer refreshing or channel cleaning was simplified by vacuuming one end of the tip and placing the other tip into the solution vial. Therefore, this fabrication method can be easily applied to most analytical laboratories economically without soft lithography and plasma bonding equipments. The attractive performance of the novel PDMS microchips has been demonstrated by using laser-induced fluorescence detection for separation of proteins. The addition of 0.04% Brij 35 in 0.04 mol/L phosphate buffer (pH 7.0) can reduce the adhesion of proteins in multienzyme tablet and make separation more easily. The electroosmotic flow (EOF) exhibits pH-independence in the range of 3-1 1 in dynamic modified microchannel.
基金supported financially by the Chinese Academy of Sciences–President’s International Fellowship Initiative for Postdoctoral Research(No.2015PT005)the National Natural Science Foundation of China(Nos.51650110506 and 51871227)the Research Fund of Open Studio for Marine Corrosion and Protection and Pilot National Laboratory for Marine Science and Technology(Qingdao)。
文摘Sulfate-reducing bacteria(SRB)has been pointed out as one of the causative agents of microbial induced corrosion in the marine environment.To address this problem,novel strategies are being experimented as against the earlier methods which have been banned due to their toxic effects on useful aquatic lives.Thus,the aim of this study was to investigate the effect of non-toxic perfluorodecyltrichlorosilane(PFDTS)on resistance of hydrophobic poly(dimethylsiloxane)/phosphoric acid-treated zinc oxide(PDMS/PA-treated ZnO)coatings to SRB-induced biofouling and corrosion.The surface features of the coatings before and after exposure to SRB/NaCl solution were analyzed by scanning electron microscopy(SEM).Wettability of the coatings before and after exposure was also measured.The interaction of SRB with the coatings was investigated by FTIR spectroscopy.The resistance performance of the modified coatings against SRB-induced corrosion was monitored by electrochemical impedance spectroscopy(EIS).The EIS measurements revealed that 0.20 g PFDTS-based coating displayed highest corrosion resistance with impedance modulus of 6.301×10^10 after 15 d of exposure to SRB/NaCl medium.The results were corroborated by surface and chemical interaction analyses,and thus,indicate that 0.20 g PFDTSmodified PDMS/PA-treated ZnO coating has potentials for excellent SRB-induced corrosion resistance and anti-biofouling performance.
文摘This article presents the fabrication and characterization of poly dimethylsiloxane/carbon nanofiber(CNF)-based nanocomposites.Although silica and carbon nanoparticles have been traditionally used to reinforce mechanical properties in PDMS matrix nanocom-posites,this article focuses on understanding their impacts on electrical and thermal properties.By adjusting both the silica and CNF concentrations,12 different nanocomposite formulations were studied,and the thermal and electrical properties of these materials were experimentally characterized.The developed nano-composites were prepared using a solvent-assisted method pro-viding uniform dispersion of the CNFs in the polymer matrix.Scanning electron microscopy was employed to determine the dispersion of the CNFs at different length scales.The thermal properties,such as thermal stability and thermal diffusivity,of the developed nanocomposites were studied using thermogravi-metirc and laser flash techniques.Furthermore,the electrical volume conductivity of each type of nanocomposite was tested using the four-probe method to eliminate the effects of contact electrical resistance during measurement.Experimental results showed that both CNFs and silica were able to impact on the overall properties of the synthesized PDMS/CNF nanocomposites.The developed nanocomposites have the potential to be applied to the development of new load sensors in the future.
文摘Simultaneously introducing mechanochromic and self-healing properties into polymers is almost a field unexplored,and the integration of these capabilities in one material has important theoretical and substantial significance.In this paper,a mechanochromic poly(dimethylsiloxane)(PDMS)elastomer with self-healing ability and superior mechanical properties is first reported.Spiropyran mechanophore and reversible hydrogen bonds are incorporated into the system to realize multi-stimuliinduced color change and self-healing ability,respectively.Upon uniaxial stretching,heating or UV irradiation,the elastomer exhibits a reversible color variation from yellow to purple,which can recover rapidly by white light illumination.Its excellent tensile strength(10.5 MPa)and elongation at break(785%)are distinctive among PDMS elastomers with no fillers.After heat treatment at 60℃for 24 h,the self-healing efficiency of strength can achieve 92.1%.This novel robust PDMS elastomer holds great promise for applications in visualized stress/strain sensing,self-healing biomaterials and wearable devices.