期刊文献+
共找到28,645篇文章
< 1 2 250 >
每页显示 20 50 100
Dopamine in the prefrontal cortex plays multiple roles in the executive function of patients with Parkinson's disease 被引量:1
1
作者 Zihang Zhou Yalong Yan +4 位作者 Heng Gu Ruiao Sun Zihan Liao Ke Xue Chuanxi Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1759-1767,共9页
Parkinson’s disease can affect not only motor functions but also cognitive abilities,leading to cognitive impairment.One common issue in Parkinson’s disease with cognitive dysfunction is the difficulty in executive ... Parkinson’s disease can affect not only motor functions but also cognitive abilities,leading to cognitive impairment.One common issue in Parkinson’s disease with cognitive dysfunction is the difficulty in executive functioning.Executive functions help us plan,organize,and control our actions based on our goals.The brain area responsible for executive functions is called the prefrontal co rtex.It acts as the command center for the brain,especially when it comes to regulating executive functions.The role of the prefrontal cortex in cognitive processes is influenced by a chemical messenger called dopamine.However,little is known about how dopamine affects the cognitive functions of patients with Parkinson’s disease.In this article,the authors review the latest research on this topic.They start by looking at how the dopaminergic syste m,is alte red in Parkinson’s disease with executive dysfunction.Then,they explore how these changes in dopamine impact the synaptic structure,electrical activity,and connection components of the prefrontal cortex.The authors also summarize the relationship between Parkinson’s disease and dopamine-related cognitive issues.This information may offer valuable insights and directions for further research and improvement in the clinical treatment of cognitive impairment in Parkinson’s disease. 展开更多
关键词 dopamine dopamine receptor dopamine transporter executive dysfunction neural network neural oscillation prefrontal cortex synaptic plasticity
下载PDF
Hippocampal dopamine as a key regulator for learning deficits in Parkinson's disease 被引量:1
2
作者 Kun Wu Shuai Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1193-1194,共2页
Parkinson's disease(PD)is a progressive neurodegenerative disorder with clinical symptoms of involuntary or uncontrollable movements such as tremors,rigidity,and incoordination.The learning deficit is largely over... Parkinson's disease(PD)is a progressive neurodegenerative disorder with clinical symptoms of involuntary or uncontrollable movements such as tremors,rigidity,and incoordination.The learning deficit is largely overlooked in the past because it is generally less impaired in the early stages of PD than in Alzheimer's disease. 展开更多
关键词 IMPAIRED dopamine CLINICAL
下载PDF
How dopamine tunes parvalbumin interneurons in the hippocampus:new experimental observations in Alzheimer's disease
3
作者 Livia La Barbera Paraskevi Krashia Annalisa Nobili 《Neural Regeneration Research》 SCIE CAS 2025年第5期1405-1406,共2页
Despite decades of dedicated resea rch,Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder for which the mechanisms of onset are sti unc ear.AD is cha racterized by featured histo... Despite decades of dedicated resea rch,Alzheimer's disease (AD) is an age-related and progressive neurodegenerative disorder for which the mechanisms of onset are sti unc ear.AD is cha racterized by featured histological alterations including amyloid-beta (AB) plaque deposition,accumulation of neurofibrillary to ngles of hyperphosphorylated-tau,and neuronal loss,accompanied by progressive cognitive decline and behavioral changes. 展开更多
关键词 ALZHEIMER alterations dopamine
下载PDF
Melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience
4
作者 Yang Cao Peihua Du +5 位作者 Yuwei Shang Jiahao Ji Leiqing Tan Xue Zhang Jizhong Xu Bowen Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第7期2270-2291,共22页
Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated tha... Melatonin and dopamine can potentially prevent waterlogging stress in apples.The current study investigated the mechanism by which melatonin and dopamine alleviate apple waterlogging stress.This study demonstrated that melatonin and dopamine alleviated waterlogging by removing reactive oxygen species(ROS),and that the nitric oxide(NO)content and nitrate reductase(NR)activity were significantly correlated.Melatonin and dopamine were also found to recruit different candidate beneficial endophytes(melatonin:Novosphingobium,Propionivibrio,and Cellvibrio;dopamine:Hydrogenophaga,Simplicispira,Methyloversatilis,Candidatus_Kaiserbacteria,and Humicola),and these endophytes were significantly and positively correlated with plant growth.Network analyses showed that melatonin and dopamine significantly affected the endophytic bacterial and fungal communities under waterlogging stress.The metabolomic results showed that melatonin and dopamine led to waterlogging resistance by upregulating the abundance of beneficial substances such as amino acids,flavonoids,coumarins,and organic acids.In addition,melatonin and dopamine regulated the physicochemical properties of the soil,which altered the endophyte community and affected plant growth.The co-occurrence network demonstrated close and complex relationships among endophytes,metabolites,soil,and the plants.Our results demonstrate that melatonin and dopamine alleviate waterlogging stress in apples by recruiting beneficial endophytes to enhance physiological resilience.This study provides new insights into how melatonin and dopamine alleviate stress and a theoretical basis for synergistic beneficial microbial resistance to waterlogging stress. 展开更多
关键词 dopamine ENDOPHYTES Malus hupehensis MELATONIN metabolomics WATERLOGGING
下载PDF
The dopaminergic system and Alzheimer's disease
5
作者 Yuhan Zhang Yuan Liang Yixue Gu 《Neural Regeneration Research》 SCIE CAS 2025年第9期2495-2512,共18页
Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-b... Alzheimer's disease is a common neurodegenerative disorder in older adults.Despite its prevalence,its pathogenesis remains unclea r.In addition to the most widely accepted causes,which in clude excessive amyloid-beta aggregation,tau hyperphosphorylation,and deficiency of the neurotransmitter acetylcholine,numerous studies have shown that the dopaminergic system is also closely associated with the occurrence and development of this condition.Dopamine is a crucial catecholaminergic neurotransmitter in the human body.Dopamine-associated treatments,such as drugs that target dopamine receptor D and dopamine analogs,can improve cognitive function and alleviate psychiatric symptoms as well as ameliorate other clinical manifestations.Howeve r,therapeutics targeting the dopaminergic system are associated with various adverse reactions,such as addiction and exacerbation of cognitive impairment.This review summarizes the role of the dopaminergic system in the pathology of Alzheimer's disease,focusing on currently available dopamine-based therapies for this disorder and the common side effects associated with dopamine-related drugs.The aim of this review is to provide insights into the potential connections between the dopaminergic system and Alzheimer's disease,thus helping to clarify the mechanisms underlying the condition and exploring more effective therapeutic options. 展开更多
关键词 adverse drug reaction Alzheimer's disease CATECHOLAMINE dopamine receptor dopamine receptor heterodimers dopaminergic system neurodegenerative disease NEUROTRANSMITTER signaling pathways traditional Chinese medicine TREATMENT
下载PDF
Mussel-inspired Methacrylic Gelatin-dopamine/Ag Nanoparticles/Graphene Oxide Hydrogels with Improved Adhesive and Antibacterial Properties for Applications as Wound Dressings
6
作者 宿正楠 HU Yanru +5 位作者 MENG Lihui OUYANG Zhiyuan LI Wenchao ZHU Fang XIE Bin 吴庆知 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS CSCD 2024年第2期512-521,共10页
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti... A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment. 展开更多
关键词 GelMA dopamine graphene oxide adhesion antibacterial ability
下载PDF
Dopamine improves apple replant disease resistance by regulating physiological resilience and rhizosphere microbial community structure
7
作者 Peihua Du Yang Cao +5 位作者 Huaite Liu Jiahao Ji Wei Sun Xueying Zhang Jizhong Xu Bowen Liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第9期3025-3044,共20页
Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing counte... Apple replant disease(ARD)is a complex agricultural problem caused by multiple stressors that can lead to increased reactive oxygen species(ROS)levels and limited nutrient utilization in plants.However,existing countermeasures cannot effectively address this challenge.Here,we used Malus hupehensis as a test organism to investigate whether the pleiotropic molecule dopamine can alleviate ARD using pot experiments.Exogenous application of 100μmol L-1 dopamine significantly promoted the growth of apple seedlings in the replanted soil,with a relative growth rate increase of 17.44%.Our results revealed two major pathways by which dopamine regulates ARD resistance in apple trees.First,dopamine effectively reduces the level of ROS and activates the expression of genes related to nitrogen(N)transport and metabolism.Among those genes,MdNLP5,MdNRT1.1,MdNLP2,MdNRT2.5,MdNLP3,MdNRT2.4,MdNADH-GAGOT,and MdFd-GAGOT were strongly regulated by dopamine.These regulatory effects promoted the uptake and utilization of soil N by the plants.Second,dopamine improved the physical and chemical properties,enhanced microbial community diversity,and promoted mutual cooperation between microbial communities in the soil.Furthermore,dopamine altered the microbial structure of rhizosphere soil(upregulating Clostridiales,Gaiellales,Sordariales and Mortierellales;downregulating Micrococcales,Longimicrobiales,Hypocreales and Cystobasidiales).Notably,dopamine significantly upregulated the abundances of Gaiella and Mortierella,both of which were positively correlated with soil urease activity,soil available N content,plant growth and N uptake.Dopamine also significantly downregulated the abundance of the plant pathogen Gibberella(by 11.71-fold)in replant soil.Our results provide insights into the mechanisms by which dopamine promotes ARD resistance,and can promote the sustainable development of the apple industry. 展开更多
关键词 continuous cropping barrier exogenous dopamine Malus hupehensis Rehd. 15N-labeling soil microbiome
下载PDF
In vitro polymerization of the dopamine-borate melanin precursor:A proof-of-concept regarding^(10)boron neutron-capture therapy for melanoma 被引量:1
8
作者 JUAN C.STOCKERT SILVINA A.ROMERO +1 位作者 MARCELO N.FELIX-POZZI ALFONSO BLÁZQUEZ-CASTRO 《BIOCELL》 SCIE 2023年第4期919-928,共10页
The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is the... The^(10)boron neutron-capture therapy(BNCT)is an emerging antitumoral method that shows increasing biomedical interest.BNCT is based on the selective accumulation of the^(10)boron isotope within the tumor,which is then irradiated with low-energy thermal neutrons,generating nuclear fission that produces 7lithium,4helium,andγrays.Simple catechol-borate esters have been rather overlooked as precursors of melanin biosynthesis,and therefore,a proof-of-concept approach for using dopamine-borate(DABO)as a suitable boron-containing candidate for potential BNCT is presented here.DABO can spontaneously oxidize and autopolymerize in vitro,giving a soluble,eumelaninlike brown-black poly-DABO product.Melanotic melanoma cell cultures treated with 1 mM DABO for 24 and 48 h were viable and showed no signs of damage or cell death.The stability and possible trans-esterification of DABO is shortly discussed.Chemical calculations and quantitative structure-activity relationships(QSAR)analysis of DABO and the BNCT agent BPA indicated that they should be cell permeant and accumulate within lysosomes and melanosomes.Molecular modeling allows visualization of both the DABO precursor and the structure of a borate derivative of the proposed catechol-porphycene model for eumelanin,showing interesting features from molecular orbital calculations.The main difference between DABO and other agents,such as BPA,is that it is not a boronic acid nor a boron cluster.This simple catechol-borate ester(protected from oxidation and blackening)could be administrated to living cells and organisms,in which biosynthesis of boron-melanin in melanoma melanocytes can lead to improved BNCT. 展开更多
关键词 ^(10)Boron Borate esters CATECHOLS dopamine EUMELANIN MELANOMA
下载PDF
Cortico-striatal gamma oscillations are modulated by dopamine D3 receptors in dyskinetic rats
9
作者 Pengfei Wang Yuewei Bi +6 位作者 Min Li Jiazhi Chen Zhuyong Wang Huantao Wen Ming Zhou Minjie Luo Wangming Zhang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1164-1177,共14页
Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Cu... Long-term levodopa administration can lead to the development of levodopa-induced dyskinesia.Gamma oscillations are a widely recognized hallmark of abnormal neural electrical activity in levodopa-induced dyskinesia.Currently,studies have reported increased oscillation power in cases of levodopa-induced dyskinesia.However,little is known about how the other electrophysiological parameters of gamma oscillations are altered in levodopa-induced dyskinesia.Furthermore,the role of the dopamine D3 receptor,which is implicated in levodopa-induced dyskinesia,in movement disorder-related changes in neural oscillations is unclear.We found that the cortico-striatal functional connectivity of beta oscillations was enhanced in a model of Parkinson’s disease.Furthermore,levodopa application enhanced cortical gamma oscillations in cortico-striatal projections and cortical gamma aperiodic components,as well as bidirectional primary motor cortex(M1)↔dorsolateral striatum gamma flow.Administration of PD128907(a selective dopamine D3 receptor agonist)induced dyskinesia and excessive gamma oscillations with a bidirectional M1↔dorsolateral striatum flow.However,administration of PG01037(a selective dopamine D3 receptor antagonist)attenuated dyskinesia,suppressed gamma oscillations and cortical gamma aperiodic components,and decreased gamma causality in the M1→dorsolateral striatum direction.These findings suggest that the dopamine D3 receptor plays a role in dyskinesia-related oscillatory activity,and that it has potential as a therapeutic target for levodopa-induced dyskinesia. 展开更多
关键词 aperiodic components dopamine D3 receptor dorsolateral striatum functional connectivity gamma oscillations levodopa-induced-dyskinesia local field potentials NEUROMODULATION Parkinson’s disease primary motor cortex
下载PDF
Recent progress in the applications of presynaptic dopaminergic positron emission tomography imaging in parkinsonism
10
作者 Yujie Yang Xinyi Li +7 位作者 Jiaying Lu Jingjie Ge Mingjia Chen Ruixin Yao Mei Tian Jian Wang Fengtao Liu Chuantao Zuo 《Neural Regeneration Research》 SCIE CAS 2025年第1期93-106,共14页
Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.... Nowadays,presynaptic dopaminergic positron emission tomography,which assesses deficiencies in dopamine synthesis,storage,and transport,is widely utilized for early diagnosis and differential diagnosis of parkinsonism.This review provides a comprehensive summary of the latest developments in the application of presynaptic dopaminergic positron emission tomography imaging in disorders that manifest parkinsonism.We conducted a thorough literature search using reputable databases such as PubMed and Web of Science.Selection criteria involved identifying peer-reviewed articles published within the last 5 years,with emphasis on their relevance to clinical applications.The findings from these studies highlight that presynaptic dopaminergic positron emission tomography has demonstrated potential not only in diagnosing and differentiating various Parkinsonian conditions but also in assessing disease severity and predicting prognosis.Moreover,when employed in conjunction with other imaging modalities and advanced analytical methods,presynaptic dopaminergic positron emission tomography has been validated as a reliable in vivo biomarker.This validation extends to screening and exploring potential neuropathological mechanisms associated with dopaminergic depletion.In summary,the insights gained from interpreting these studies are crucial for enhancing the effectiveness of preclinical investigations and clinical trials,ultimately advancing toward the goals of neuroregeneration in parkinsonian disorders. 展开更多
关键词 aromatic amino acid decarboxylase brain imaging dopamine transporter Parkinson’s disease PARKINSONISM positron emission tomography presynaptic dopaminergic function vesicle monoamine transporter type 2
下载PDF
Effects of endogenous dopamine induced by low concentration atropine eye drops on choroidal neovascularization in high myopia mice 被引量:2
11
作者 Yan-Yan Ji Shi-Xi Zhang +1 位作者 Ye Kang Song Chen 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2023年第7期1034-1040,共7页
AIM:To evaluate effects of endogenous dopamine induced by low concentration atropine eye drops on choroidal neovascularization(CNV)in high myopia mice.METHODS:The C57BL/6J mice were deprived of the right eye for 4wk,a... AIM:To evaluate effects of endogenous dopamine induced by low concentration atropine eye drops on choroidal neovascularization(CNV)in high myopia mice.METHODS:The C57BL/6J mice were deprived of the right eye for 4wk,and the high myopia was diagnosed by optometry,the diopter was less than-6.00 D,and CNV was induced by 532 nm laser.The changes of dopamine D1 receptor(DRD1),dopamine D2 receptor(DRD2),and vascular endothelial growth factor A(VEGFA)were detected by Western blot technology at 0.5,1,2h,and 7d after 0.01%,0.05%,and 0.1%atropine eye drops,respectively,the area of CNV was measured.RESULTS:Significant increases were observed on the expression of DRD2 in mouse high myopia model at 0.5,1,2h,7d with 0.05%and 0.1%atropine eye drops(P<0.05).Significant decreases were observed on the expression of DRD1 and VEGFA in mouse high myopia model at 0.5,1,2h,7d with 0.05%and 0.1%atropine eye drops(P<0.05).The area of CNV induced by laser in the drug-treated group was significantly smaller than that in the control group,and the higher the concentration,the more significant the inhibitory effect(P<0.05).CONCLUSION:The 0.01%,0.05%,0.1%atropine eye drops can decrease the level of VEGFA and inhibit high myopia CNV indirectly by up-regulating the level of DRD2 and down-regulating the level of DRD1,and the effect of 0.05%and 0.1%atropine eye drops is more significant. 展开更多
关键词 high myopia choroidal neovascularization low concentration atropine eye drops dopamine D1 receptor dopamine D2 receptor
下载PDF
Blunt dopamine transmission due to decreased GDNF in the PFC evokes cognitive impairment in Parkinson’s disease 被引量:1
12
作者 Chuan-Xi Tang Jing Chen +14 位作者 Kai-Quan Shao Ye-Hao Liu Xiao-Yu Zhou Cheng-Cheng Ma Meng-Ting Liu Ming-Yu Shi Piniel Alphayo Kambey Wei Wang Abiola Abdulrahman Ayanlaja Yi-Fang Liu Wei Xu Gang Chen Jiao Wu Xue Li Dian-Shuai Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1107-1117,共11页
Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relations... Studies have found that the absence of glial cell line-derived neurotrophic factor may be the primary risk factor for Parkinson’s disease. However, there have not been any studies conducted on the potential relationship between glial cell line-derived neurotrophic factor and cognitive performance in Parkinson’s disease. We first performed a retrospective case-control study at the Affiliated Hospital of Xuzhou Medical University between September 2018 and January 2020 and found that a decreased serum level of glial cell line-derived neurotrophic factor was a risk factor for cognitive disorders in patients with Parkinson’s disease. We then established a mouse model of Parkinson’s disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and analyzed the potential relationships among glial cell line-derived neurotrophic factor in the prefrontal cortex, dopamine transmission, and cognitive function. Our results showed that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex weakened dopamine release and transmission by upregulating the presynaptic membrane expression of the dopamine transporter, which led to the loss and primitivization of dendritic spines of pyramidal neurons and cognitive impairment. In addition, magnetic resonance imaging data showed that the long-term lack of glial cell line-derived neurotrophic factor reduced the connectivity between the prefrontal cortex and other brain regions, and exogenous glial cell line-derived neurotrophic factor significantly improved this connectivity. These findings suggested that decreased glial cell line-derived neurotrophic factor in the prefrontal cortex leads to neuroplastic degeneration at the level of synaptic connections and circuits, which results in cognitive impairment in patients with Parkinson’s disease. 展开更多
关键词 cognitive impairment degree centrality dendritic spine dopamine transmission dopamine transporter glial cell line-derived neurotrophic factor Parkinson’s disease prefrontal cortex synaptic plasticity
下载PDF
Electroanalysis and simultaneous determination of dopamine and epinephrine at poly(isonicotinic acid)-modified carbon paste electrode in the presence of ascorbic acid 被引量:4
13
作者 Yuan Zhen Zhou Li Juan Zhang +2 位作者 Shuang Li Chen She Ying Dong Xiao Hui Zheng 《Chinese Chemical Letters》 SCIE CAS CSCD 2009年第2期217-220,共4页
A carbon paste electrode modified with electropolymerized fills of isonicotinic acid was developed. The modified electrode shows excellent electrocatalytic activity toward the oxidation of both dopamine (DA) and epi... A carbon paste electrode modified with electropolymerized fills of isonicotinic acid was developed. The modified electrode shows excellent electrocatalytic activity toward the oxidation of both dopamine (DA) and epinephrine (EP). Separation of the reduction peak potentials for dopamine and epinephrine was about 357 mV in pH 5.3 phosphate buffer solution (PBS) and the character was used for the detection DA and EP simultaneously. The peak currents increase linearly with DA and EP concentration over the range of 8.0×10^-5 to 7.0×10^-4 mol/L and 5.0×10^-6 to 1.0×10^-4 mol/L with detection limits of 2×10^-5 and 1×10^-6 mol/L, respectively. The interference studies showed that the modified electrode exhibits excellent selectivity in the presence of large excess of ascorbic acid (AA). 展开更多
关键词 dopamine EPINEPHRINE Isonicotinic acid Ascorbic acid Simultaneous determination
下载PDF
A selective voltammetric detection for dopamine using poly(gallic acid) film modified electrode 被引量:3
14
作者 Song, Wei Chen, Yu +1 位作者 Xu, Juan Tian, Dan Bi 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第3期349-352,共4页
The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participa... The electrochemistry behavior of dopamine was investigated by cyclic voltammetry and differential pulse voltammetry at a poly (gallic acid) film modified glassy carbon electrode.Two electrons and two protons participated in the diffusion-controlled electrocatalytic oxidation of dopamine with a diffusion coefficient of 2.186×10^(-5) cm^2/s.The interference of ascorbic acid with the determination of dopamine could be efficiently eliminated.This work provided a simple approach to selectively and sensitively de... 展开更多
关键词 dopamine Ascorbic acid Gallic acid ELECTROpolyMERIZATION Modified electrode
下载PDF
Ginsenoside Rb1 protects dopaminergic neurons from inflammatory injury induced by intranigral lipopolysaccharide injection 被引量:14
15
作者 Da-Wei Li Fa-Zhan Zhou +4 位作者 Xian-Chang Sun Shu-Chen Li Jin-Bin Yang Huan-Huan Sun Ai-Hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2019年第10期1814-1822,共9页
Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease.As such,inhibition of microglial overactivation might be ... Accumulating studies suggest that neuroinflammation characterized by microglial overactivation plays a pivotal role in the pathogenesis of Parkinson’s disease.As such,inhibition of microglial overactivation might be a promising treatment strategy to delay the onset or slow the progression of Parkinson’s disease.Ginsenoside Rbl,the most active ingredient of ginseng,reportedly exerts neuroprotective effects by suppressing inflammation in vitro.The present study aimed to evaluate the neuroprotective and anti-inflammatory effects of ginsenoside Rbl in a lipopolysaccharide-induced rat Parkinson’s disease model.Rats were divided into four groups.In the control group,sham-operated rats were intraperitoneally administered normal saline for 14 consecutive days.In the ginsenoside Rbl group,ginsenoside Rb1(20 mg/kg)was intraperitoneally injected for 14 consecutive days after sham surgery.In the lipopolysaccharide group,a single dose of lipopolysaccharide was unilaterally microinjected into the rat substantial nigra to establish the Parkinson’s disease model.Lipopolysaccharide-injected rats were treated with normal saline for 14 consecutive days.In the ginsenoside Rbl +lipopolysaccharide group,lipopolysaccharide was unilaterally microinjected into the rat substantial nigra.Subsequently,ginsenoside Rbl was intraperitoneally injected for 14 consecutive days.To investigate the therapeutic effects of ginsenoside Rbl,behavioral tests were performed on day 15 after lipopolysaccharide injection.We found that ginsenoside Rbl treatment remarkably reduced apomorphine-induced rotations in lipopolysaccharide-treated rats compared with the lipopolysaccharide group.To investigate the neurotoxicity of lipopolysaccharide and potential protective effect of ginsenoside Rbl,contents of dopamine and its metabolites in the striatum were measured by high-performance liquid chromatography.Compared with the lipopolysaccharide group,ginsenoside Rbl obviously attenuated the lipopolysaccharide-induced depletion of dopamine and its metabolites in the striatum.To further explore the neuroprotective effect of ginsenoside Rbl against lipopolysaccharide-induced neurotoxicity,immunohistochemistry and western blot assay of tyrosine hydroxylase were performed to evaluate dopaminergic neuron degeneration in the substantial nigra par compacta.The results showed that lipopolysaccharide injection caused a large loss of tyrosine hydroxylase-immunoreactive neurons in the substantia nigra and a significant decrease in overall tyrosine hydroxylase expression.However,ginsenoside Rb1 noticeably reversed these changes.To investigate whether the neuroprotective effect of ginsenoside Rbl was associated with inhibition of lipopolysaccharide-induced microglial activation,we examined expression of the microglia marker Iba-1.Our results confirmed that lipopolysaccharide injection induced a significant increase in Iba-1 expression in the substantia nigra;however,ginsenoside Rbl effectively suppressed lipopolysaccharide-induced microglial overactivation.To elucidate the inhibitory mechanism of ginsenoside Rb1,we examined expression levels of inflammatory mediators(tumor necrosis factor-a,interleukin-1β,inducible nitric oxide synthase,and cyclooxygenase 2)and phosphorylation of nuclear factor kappa B signaling-related proteins(IκB,IKK)in the substantia nigra with enzyme-linked immunosorbent and western blot assays.Our results revealed that compared with the control group,phosphorylation and expression of inflammatory mediators IκB and IKK in the substantia nigra of lipopolysaccharide group rats were significantly increased;whereas,ginsenoside Rbl obviously reduced lipopolysaccharide-induced changes on the lesioned side of the substantial nigra par compacta.These findings confirm that ginsenoside Rbl can inhibit inflammation induced by lipopolysaccharide injection into the substantia nigra and protect dopaminergic neurons,which may be related to its inhibition of the nuclear factor kappa B signaling pathway.This study was approved by the Experimental Animal Ethics Committee of Shandong University of China in April 2016(approval No.KYLL-2016-0148). 展开更多
关键词 nerve REGENERATION neurodegeneration Parkinson's disease GINSENOSIDE RB1 neuroinflammation LIPOpolySACCHARIDE dopamineRGIC neuron microglia nuclear factor kappa B dopamine tyrosine HYDROXYLASE substantia nigra neural REGENERATION
下载PDF
Poly(amaranth) film based sensor for resolution of dopamine in the presence of uric acid:A voltammetric study 被引量:1
16
作者 Umesh Chandra B.E.Kumara Swamy +4 位作者 Ongera Gilbert M.Pandurangachar Sathish Reddy S.Sharath Shankar B.S.Sherigara 《Chinese Chemical Letters》 SCIE CAS CSCD 2010年第12期1490-1492,共3页
The electropolymerized film of amaranth was prepared on the surface of graphite pencil electrode(GPE) using cyclic voltammetric technique.This poly(amaranth) film coated electrode exhibited an excellent electrocat... The electropolymerized film of amaranth was prepared on the surface of graphite pencil electrode(GPE) using cyclic voltammetric technique.This poly(amaranth) film coated electrode exhibited an excellent electrocatalytic activity towards the detection of dopamine(DA) in the presence of uric acid(UA) in 0.2 mol/L phosphate buffer solution at pH 7.0.The effect of interference study was carried out using differential pulse voltammetric technique.The poly(amaranth) modified GPE was applied for the detection of DA in dopamine injection with satisfactory results. 展开更多
关键词 poly(amaranth) Graphite pencil electrode dopamine Uric acid SENSOR
下载PDF
4天香烟烟雾暴露联合poly(I:C)刺激对小鼠肺部免疫应答及干扰素表达的影响
17
作者 董晓飞 梁紫尧 +5 位作者 范龙 全景羽 林琳 周颖芳 吴蕾 于旭华 《中国免疫学杂志》 CAS CSCD 北大核心 2024年第1期67-71,共5页
目的:探讨短期香烟烟雾暴露联合poly(I:C)刺激对小鼠肺部免疫应答及干扰素表达的影响。方法:BALB/c小鼠随机分为4组:对照组、熏烟组、poly(I:C)组和熏烟联合poly(I:C)组。检测支气管肺泡灌洗液(BALF)中总细胞数及细胞分类计数;普通光镜... 目的:探讨短期香烟烟雾暴露联合poly(I:C)刺激对小鼠肺部免疫应答及干扰素表达的影响。方法:BALB/c小鼠随机分为4组:对照组、熏烟组、poly(I:C)组和熏烟联合poly(I:C)组。检测支气管肺泡灌洗液(BALF)中总细胞数及细胞分类计数;普通光镜下观察各组细胞形态;荧光定量PCR检测肺组织细胞因子、趋化因子和干扰素及干扰素刺激基因表达。结果:与对照组相比,熏烟联合poly(I:C)组总细胞数计数、巨噬细胞与中性粒细胞计数明显升高(P<0.05),且熏烟联合poly(I:C)组巨噬细胞计数高于poly(I:C)组;与poly(I:C)组比较,熏烟联合poly(I:C)组小鼠气道灌洗液巨噬细胞体积较大,呈圆形或不规则形,细胞质较多空泡;与对照组相比,熏烟联合poly(I:C)组小鼠肺组织中性粒细胞趋化因子CXCL1(P<0.05)、CXCL2(P<0.01)和淋巴细胞趋化因子CCL2(P<0.01)mRNA表达升高,肺组织IL-1β、IL-6、TNF-αmRNA表达明显升高(P<0.01),肺组织IFN-β(P<0.01)、IFN-γ(P<0.05)、MX2(P<0.01)和IP-10(P<0.01)表达显著升高,且与poly(I:C)组小鼠相比,熏烟联合poly(I:C)组小鼠肺组织CXCL2(P<0.05)、TNF-α(P<0.01)和IFN-β(P<0.05)mRNA表达明显升高。结论:熏烟联合poly(I:C)诱导了小鼠肺部炎症反应和干扰素及干扰素刺激基因表达。同时,香烟暴露加剧了poly(I:C)诱导的小鼠肺部急性炎症反应和Ⅰ型干扰素表达。 展开更多
关键词 香烟烟雾 poly(I:C) 免疫细胞 气道炎症 干扰素
下载PDF
Overoxidized poly(3,4-ethylenedioxythiophene)-gold nanoparticles-graphene-modified electrode for the simultaneous detection of dopamine and uric acid in the presence of ascorbic acid 被引量:1
18
作者 Junqiang Pan Mei Liu +2 位作者 Dandan Li Haonan Zheng Dongdong Zhang 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2021年第6期699-708,共10页
An innovative,ternary nanocomposite composed of overoxidized poly(3,4-ethylenedioxythiophene)(OPEDOT),gold nanoparticles(Au NPs),and electrochemically reduced graphene oxide(ERGO)was prepared on a glassy carbon electr... An innovative,ternary nanocomposite composed of overoxidized poly(3,4-ethylenedioxythiophene)(OPEDOT),gold nanoparticles(Au NPs),and electrochemically reduced graphene oxide(ERGO)was prepared on a glassy carbon electrode(GCE)(OPEDOT-Au NPs-ERGO/GCE)through homogeneous chemical reactions and heterogeneous electrochemical methods.The morphology,composition,and structure of this nanocomposite were characterized by transmission electron microscopy,scanning electron microscopy,X-ray diffraction,and X-ray photoelectron spectroscopy.The electrochemical properties of the OPEDOT-Au NPs-ERGO/GCE were investigated by cyclic voltammetry using potassium ferricyanide and hexaammineruthenium(III)chloride redox probe systems.This modified electrode shows excellent electro-catalytic activity for dopamine(DA)and uric acid(UA)under physiological p H conditions,but inhibits the oxidation of ascorbic acid(AA).Linear voltammetric responses were obtained when DA concentrations of approximately 4.0-100μM and UA concentrations of approximately 20-100μM were used.The detection limits(S/N=3)for DA and UA were 1.0 and 5.0μM,respectively,under physiological conditions and in the presence of 1.0 m M of AA.This developed method was applied to the simultaneous detection of DA and UA in human urine,where satisfactory recoveries from 96.7%to 105.0%were observed.This work demonstrates that the developed OPEDOT-Au NPs-ERGO ternary nanocomposite,with its excellent ion-selectivity and electro-catalytic activity,is a promising candidate for the simultaneous detection of DA and UA in the presence of AA in physiological and pathological studies. 展开更多
关键词 GRAPHENE poly(3 4-ethylenedioxythiophene) OVEROXIDATION dopamine Uric acid Ascorbic acid
下载PDF
Corrosion protection investigations of carbon dots and polydopamine composite coating on magnesium alloy 被引量:8
19
作者 H.D.Zhang A.Y.Chen +2 位作者 B.Gan H.Jiang L.J.Gu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2022年第5期1358-1367,共10页
A composite coating of nitrogen-doped carbon dots(N–CDs)and polydopamine(PDA)was prepared on magnesium alloy by combining electrodeposition with dip coating methods.The microstructure of the N–CDs/PDA composite coat... A composite coating of nitrogen-doped carbon dots(N–CDs)and polydopamine(PDA)was prepared on magnesium alloy by combining electrodeposition with dip coating methods.The microstructure of the N–CDs/PDA composite coating,including composition,surface morphology,and crystalline structure,is characterized by Raman spectroscopy,scanning electron microscopy,transmission electron microscopy,and X-ray photoelectron spectroscopy,respectively.The corrosion protection performances of the composite coating are evaluated by potentiodynamic polarization tests,electrochemical impedance spectroscopy,and salt spray tests.The effect of the particle size of the N–CDs on the corrosion performance is also investigated.The results show that the corrosion performance of the N–CDs coatings are enhanced with the increase of the particle sizes.Furthermore,an obvious self-healing performance is observed on the surface of the N–CDs/PDA composite coating.These results indicate that N–CDs/PDA composite coating can improve the corrosion performance of the Mg alloy,and open a new design direction for the protective coating of metallic materials. 展开更多
关键词 Magnesium alloy N-doped carbon dots Particle size dopamine Coating Corrosion resistance
下载PDF
Dopamine alleviates cadmium stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed by high-throughput sequencing and soil metabolomics
20
作者 Yang Cao Peihua Du +3 位作者 Jiran Zhang Jiahao Ji Jizhong Xu Bowen Liang 《Horticulture Research》 SCIE CSCD 2023年第7期233-249,共17页
Dopamine has demonstrated promise as a stress-relief substance.However,the function of dopamine in Cd tolerance and its mechanism remains largely unknown.The current study was performed to investigate the mechanism of... Dopamine has demonstrated promise as a stress-relief substance.However,the function of dopamine in Cd tolerance and its mechanism remains largely unknown.The current study was performed to investigate the mechanism of dopamine on alleviating apple Cd stress through regular application of CdCl2 and dopamine solution to potting soil.The results indicated that dopamine significantly reduced reactive oxygen species(ROS)and Cd accumulation and alleviated the inhibitory effect of Cd stress on the growth of apple plants through activation of the antioxidant system,enhancement of photosynthetic capacity,and regulation of gene expression related to Cd absorption and detoxification.The richness of the rhizosphere microbial community increased,and community composition and assembly were affected by dopamine treatment.Network analysis of microbial communities showed that the numbers of nodes and total links increased significantly after dopamine treatment,while the keystone species shifted.Linear discriminant analysis effect size indicated that some biomarkers were significantly enriched after dopamine treatment,suggesting that dopamine induced plants to recruit potentially beneficial microorganisms(Pseudoxanthomonas,Aeromicrobium,Bradyrhizobium,Frankia,Saccharimonadales,Novosphingobium,and Streptomyces)to resist Cd stress.The co-occurrence network showed several metabolites that were positively correlated with relative growth rate and negatively correlated with Cd accumulation,suggesting that potentially beneficial microorganisms may be attracted by several metabolites(L-threonic acid,profenamine,juniperic acid and(3β,5ξ,9ξ)-3,6,19-trihydroxyurs-12-en-28-oic acid).Our results demonstrate that dopamine alleviates Cd stress in apple trees by recruiting beneficial microorganisms to enhance the physiological resilience revealed.This study provides an effective means to reduce the harm to agricultural production caused by heavy metals. 展开更多
关键词 dopamine stress CADMIUM
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部