The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the w...The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.展开更多
Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C...Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C showed a monotonous increase of crystallization temperature compared to pure PPS. However, a further increase of curing time decreased the crystallization temperature. The change in the half-crystallization time (t1/2) was similar to the crystallization temperature. Thus, the cross-linking of PPS affected crystallization behaviors significantly. To a certain extent, crosslinks acted as nucleation agents, but excessive cross-linking hindered the crystallization. Morphologies observed by polarized optical microscopy suggested that thermal curing for as little as 1 day contributed to the spherulitic structure having a smaller size, that was not observed with pure PPS.展开更多
Owing to the excellent filtration performance and low energy cost,polymeric nanofibers microfiltration(MF)membranes have attracted increasing attentions.Poly(arylene sulfide sulfone)(PASS),as one of the structurally m...Owing to the excellent filtration performance and low energy cost,polymeric nanofibers microfiltration(MF)membranes have attracted increasing attentions.Poly(arylene sulfide sulfone)(PASS),as one of the structurally modified polymers based on poly-(phenylene sulfide)(PPS),has been selected as the raw material to fabricate nanofibers MF membranes via electrospun techniques.The effects of PASS solution and the electrospinning processing parameters on the structural morphology of nanofibers were investigated in detail.The average diameter of PASS nanofibers was(296±46)nm under the optimal condition:polymer concentration of 0.27 g·m L^–1 PASS/DMI,applied voltage of 20 kV,and speed of collector drum of 300 r·min^–1.And then the multi-layer PASS nanofibers MF membranes were fabricated from cold-pressing the optimized PASS nanofibers(as-prepared PASS nanofibers)membrane.The morphology,porosity,pore size,mechanical properties,and surface wettability of the multi-layer PASS nanofibers MF membranes could be tuned by the layers of as-prepared nanofibers membrane.The results demonstrated that the membrane with 6 layers(marked as PASS-6)exhibited the smallest porosity,smallest pore size,highest mechanical property,and best surface wettability.Meanwhile,the multi-layer PASS nanofibers MF membranes showed that the rejection ratio gradually increased,while the pure water flux decreased with increasing membranes thickness.The PASS-6 membrane exhibited large water flux of 747.76 L·m^–2·h^–1 and high separation efficiency of 99.9%to 0.2μm particles,making it a promising candidate for microfilter.展开更多
Poly(phenylene sulfide) (PPS) with different crosslinking levels was successfully fabricated by means of high- temperature isothermal treatment (IT). The crosslinking degree of PPS was increased with IT time as ...Poly(phenylene sulfide) (PPS) with different crosslinking levels was successfully fabricated by means of high- temperature isothermal treatment (IT). The crosslinking degree of PPS was increased with IT time as revealed by Fourier-transform infrared spectroscopy and dynamic viscosity measurements. Its influence on the non-isothermal crystallization behaviors of PPS was studied by differential scanning calorimeter (DSC). The crystallization peak temperature of PPS with 6 h IT was 15 K higher than that of the one with 2 h IT at 30 K/min cooling rate. The non-isothermal crystallization data were also analyzed based on the Ozawa model. The Ozawa exponent m decreased from 3.5 to 2.2 at 232~C with the increase of the IT time, suggestive of intensive thermal oxidative crosslinking reducing the crystallite dimension as PPS crystal grew. The reduced cooling crystallization function K(T) was indicative of the larger activation energy of crosslinked PPS chain diffusion into crystal lattice, resulting in a slow crystal growth rate. Additionally, the overall crystallization rate of PPS was also accelerated with the increase of crosslinking degree from the observation of polarized optical micrograph. These results indicated that the chemical crosslinked points and network structures formed during the high-temperature isothermal treatment acted as the effective nucleating sites, which greatly promoted the crystallization process of PPS and changed the type of nucleation and the geometry of crystal growth accordingly.展开更多
基金supported by the 863 program of China(No.2007AA 03Z561)
文摘The thermal degradation of poly(arylene sulfide sulfone)/N-methylpyrrolidone (PASS/NMP) crystal solvate was studied by thermogravimetric analysis (TGA) and was compared with pure PASS in order to determine the way in which the formation of the crystal solvate affected the thermal properties of the polymer. The activation energy of the solid state process was determined using Kissinger's method, which does not require knowledge of the reaction mechanism (RM), to be 174.18 kJ/mol which was lower than that for pure PASS (E = 214 kJ/mol). The study of master curves together with interpretation of integral methods, allows confirmation that the thermal degradation mechanism for PASS in the crystal solvate system is a decelerated Rn type, which is a solid-state process based on a phase boundary controlled reaction, in the conversion range considered. Whereas, the pure PASS follows a decelerated Dn thermodegradation mechanism in the same conversion range.
文摘Commercial poly(p-phenylene sulfide) (PPS) was thermally cured, which resulted in an increase of molecular weight due to cross-linking. Non-isothermal crystallization studies of samples cured for up to 7 days at 250?C showed a monotonous increase of crystallization temperature compared to pure PPS. However, a further increase of curing time decreased the crystallization temperature. The change in the half-crystallization time (t1/2) was similar to the crystallization temperature. Thus, the cross-linking of PPS affected crystallization behaviors significantly. To a certain extent, crosslinks acted as nucleation agents, but excessive cross-linking hindered the crystallization. Morphologies observed by polarized optical microscopy suggested that thermal curing for as little as 1 day contributed to the spherulitic structure having a smaller size, that was not observed with pure PPS.
文摘Owing to the excellent filtration performance and low energy cost,polymeric nanofibers microfiltration(MF)membranes have attracted increasing attentions.Poly(arylene sulfide sulfone)(PASS),as one of the structurally modified polymers based on poly-(phenylene sulfide)(PPS),has been selected as the raw material to fabricate nanofibers MF membranes via electrospun techniques.The effects of PASS solution and the electrospinning processing parameters on the structural morphology of nanofibers were investigated in detail.The average diameter of PASS nanofibers was(296±46)nm under the optimal condition:polymer concentration of 0.27 g·m L^–1 PASS/DMI,applied voltage of 20 kV,and speed of collector drum of 300 r·min^–1.And then the multi-layer PASS nanofibers MF membranes were fabricated from cold-pressing the optimized PASS nanofibers(as-prepared PASS nanofibers)membrane.The morphology,porosity,pore size,mechanical properties,and surface wettability of the multi-layer PASS nanofibers MF membranes could be tuned by the layers of as-prepared nanofibers membrane.The results demonstrated that the membrane with 6 layers(marked as PASS-6)exhibited the smallest porosity,smallest pore size,highest mechanical property,and best surface wettability.Meanwhile,the multi-layer PASS nanofibers MF membranes showed that the rejection ratio gradually increased,while the pure water flux decreased with increasing membranes thickness.The PASS-6 membrane exhibited large water flux of 747.76 L·m^–2·h^–1 and high separation efficiency of 99.9%to 0.2μm particles,making it a promising candidate for microfilter.
基金financially supported by the National Science Fund for Distinguished Young Scholars (No.50925311)the National Natural Science Foundation of China (No.20976112)
文摘Poly(phenylene sulfide) (PPS) with different crosslinking levels was successfully fabricated by means of high- temperature isothermal treatment (IT). The crosslinking degree of PPS was increased with IT time as revealed by Fourier-transform infrared spectroscopy and dynamic viscosity measurements. Its influence on the non-isothermal crystallization behaviors of PPS was studied by differential scanning calorimeter (DSC). The crystallization peak temperature of PPS with 6 h IT was 15 K higher than that of the one with 2 h IT at 30 K/min cooling rate. The non-isothermal crystallization data were also analyzed based on the Ozawa model. The Ozawa exponent m decreased from 3.5 to 2.2 at 232~C with the increase of the IT time, suggestive of intensive thermal oxidative crosslinking reducing the crystallite dimension as PPS crystal grew. The reduced cooling crystallization function K(T) was indicative of the larger activation energy of crosslinked PPS chain diffusion into crystal lattice, resulting in a slow crystal growth rate. Additionally, the overall crystallization rate of PPS was also accelerated with the increase of crosslinking degree from the observation of polarized optical micrograph. These results indicated that the chemical crosslinked points and network structures formed during the high-temperature isothermal treatment acted as the effective nucleating sites, which greatly promoted the crystallization process of PPS and changed the type of nucleation and the geometry of crystal growth accordingly.