A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA...A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.展开更多
The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic...The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.展开更多
The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, tr...The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.展开更多
The novel polymer metal chelate electrolytes(polychelates)were prepared by incorporation of cobalt sulfate(Co)into poly(acrylic acid)(PAA)host matrix.Quasi-solid state supercapacitor devices were fabricated using poly...The novel polymer metal chelate electrolytes(polychelates)were prepared by incorporation of cobalt sulfate(Co)into poly(acrylic acid)(PAA)host matrix.Quasi-solid state supercapacitor devices were fabricated using polychelates,PAA-Co X(X:3,5,7,and 10)where X represents the doping fraction(w/w)of Co in PAA.All polymer metal electrolytes were showed excellent bending-stretching properties,thermal stability and electrochemical durability with an optimum ionic conductivity of 3.15×10^(-4) S cm^(-1).Hierarchically porous activated carbon and nano-sized conductive carbon were used to form carbon composite symmetrical device electrodes.The electric double-layer capacitor(EDLC)and redox reactions of Co-incorporated polychelates at the interfaces of porous activated carbon provided an optimum specific capacitance of 341.33 F g^(-1) with a device of PAA-Co7,which is at least 15 times enhancement compared to the device of pristine PAA.The PAA-Co7 device also provided energy density of 21.25 Wh kg^(-1) at a power density of 117.69 W kg^(-1).A prolonged cyclic stability of the device exhibited superior capacitive performance after 10,000 charge-discharge cycles and the maintained 90%of its initial performance.In addition,the supercapacitor with a dimension of 1.5 cm×3 cm containing PAA-Co7 successfully operated the red-blue-green(RGB)LED light.展开更多
A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and pol...A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad. These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.展开更多
Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslin...Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'- azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%. The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.展开更多
This research explored replacing acrylic core-shell impact modifier (AIM) by silica fume to toughen PVC. 100%, 75%, 50% and 25% of AIM (8 phr) were substituted by silica fume in PVC respectively, and then processe...This research explored replacing acrylic core-shell impact modifier (AIM) by silica fume to toughen PVC. 100%, 75%, 50% and 25% of AIM (8 phr) were substituted by silica fume in PVC respectively, and then processed by dry blending and twin-screw extrusion. Severe silica fume agglomeration was observed by scanning electron microscope (SEM) in the PVC matrix when 8 phr pure silica fume was used and processed by screw speed of 20 rpm. Its tensile strength was thereby reduced by 38% comparing to unmodified PVC. The silica fume was successfully dispersed while the screw speed was slowed down to 10 rpm to give a stronger screw torque and a longer melt residential time in the extruder. The tensile strength was ’recovered’ to a level comparable to unmodified PVC. Impact test were performed on all formulations extruded at 10 rpm screw speed and synergetic toughening effect was found with 50% substitution and it had the impact strength that was comparable to 8 phr pure AIM toughened PVC.展开更多
Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabrica...Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FF-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.展开更多
Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, ch...Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds were prepared. The swelling properties of the hydrogels in solutions of different pH values (adjusted by adding NaOH or HCI) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel, and molar ratios of AA to An, APS to An, and NaOH to AA, And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.展开更多
A new star-hyperbranched poly(acrylic acid) has been synthesized and incorporated into dental glassionomer cement for enhanced mechanical strengths. The effects of arm number and branching on viscosity of the polymer ...A new star-hyperbranched poly(acrylic acid) has been synthesized and incorporated into dental glassionomer cement for enhanced mechanical strengths. The effects of arm number and branching on viscosity of the polymer aqueous solution and mechanical strengths of the formed experimental cement were evaluated. It was found that the higher the arm number and the more the branching, the lower the viscosity of the polymer solution as well as the mechanical strengths of the formed cement. It was also found that the experimental cement exhibited significantly higher mechanical strengths than commercial Fuji II LC. The experimental cement was 51% in CS, 55% in compressive modulus, 118% in DTS, 82% in FS, 18% in FT and 85% in KHN higher than Fuji II LC. The experimental cement was only 6.7% of abrasive and 10% of attritional wear depths of Fuji II LC in each wear cycle. It appears that this novel experimental cement is a clinically attractive dental restorative and may potentially be used for high-wear and high-stress-bearing site restorations.展开更多
A novel biopolymer-based superabsorbent hydrogel composite based on kappa-carrageenan (κC) have been prepared via graft copolymerization of acrylic acid (AA) in the presence of bentonite powder using methylenebisacry...A novel biopolymer-based superabsorbent hydrogel composite based on kappa-carrageenan (κC) have been prepared via graft copolymerization of acrylic acid (AA) in the presence of bentonite powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The hydrogel structure was confirmed using FTIR spectroscopy and the morphology of the samples was examined by scanning electron microscopy (SEM). The affecting variables onto graft polymerization (i.e. AA, MBA and APS concentration, as well as the bentonite amount) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The results of Brunauer–Emmett–Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 11.5 nm. The effect of various salt media and solutions with different pHs on the swelling of the superabsorbent was also studied.展开更多
New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms ...New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state.However,its liquid crystallinity is very low as compared to that of poly{2,5-bis[(4'-methoxyphenoxy)carbonyl]-styrene}.展开更多
In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive...In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive additive in anode as they bridged the zinc particles. Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS) was applied as a co-binder to enhance both the conductivity and flexibility. A poly(acrylic acid)(PAA) and polyvinyl alcohol(PVA) coated paper separator was used to enhance the battery performance where the PVP–PAA layer facilitated electrolyte storage. The batteries remained functional under bending conditions and after bending. Multiple design optimizations were also carried out for storage and performance purposes.展开更多
In this paper we will try to create, propose and analyze structure of a slow light device, based on plasmonic induced transparency in a metal-dielectric-metal based ring resonator. Group index by first design about 37...In this paper we will try to create, propose and analyze structure of a slow light device, based on plasmonic induced transparency in a metal-dielectric-metal based ring resonator. Group index by first design about 37 and second design about 35 earned. The proposed dielectric material is Poly Methyl Meta Acrylate (PMMA) sandwiched by gold metal cladding. Finite Element Method-con- ducted Electromagnetic simulations are employed to evaluate the plasmonic designs for behavior of slow light. The signal and pump wavelength are assumed to be 830 nm and 1550 nm respectively in the systems. The overall length of the plasmonic slow light system is 600 nm. In a wide range of frequency bands, the optical properties of metals can be described with a plasma model. The optical signal can be achieved with the use of surface waves on the boundary between the insulating materials and metals with dimensions smaller than the diffraction limit. The main goal, is estimation of optical characteristics such as bandwidth, the Real and Imaginary parts of refractive index, group velocity and slow down factor in such optical devices. The obtained results and observations, can be useful in basic research and the production of highly integrated plasmonic devices.展开更多
High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent sy...High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved.展开更多
Poly(n-alkyl acrylate) with long side groups,namely,poly(lauryl acrylate)(PLA) was synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization,and the trithioester terminal groups were...Poly(n-alkyl acrylate) with long side groups,namely,poly(lauryl acrylate)(PLA) was synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization,and the trithioester terminal groups were converted to thiol by reducing reaction.Grafting of the obtained polymer onto nano-silica modified with 3-(methacryloxy)propyl-trimethoxysilane(SiO2-MPS) was conducted by thiol-ene ‘click chemistry'.PLA was characterized by proton nuclear magnetic resonance(1H NMR) and gel permeation chromatography(GPC).Fourier transform infrared(FTIR) spectrometry and thermogravimetric analysis(TGA) were used to demonstrate the grafting reaction,and the grafted hairy nano-silica(SiO2-g-PLA) was viewed under a transmission electron microscope(TEM).According to TGA,grafting ratio and grafting density of SiO2-g-PLA are 30.27% and 0.013 chain/nm2,respectively.The static water contact angle of SiO2-g-PLA is (80.10±2.97)°,which ensures its hydrophobicity.Dispersion experiment was carried out to confirm its dispersibility in mixed solvents,indicating its potential application in coatings or composites.展开更多
Based on conventional metal-oxide-semiconductor field-effect transistor (MOSFET),a novel kind of chemical field-effect transistor (ChemFET) gas sensor array has been designed and fabricated.The obtained sensor consist...Based on conventional metal-oxide-semiconductor field-effect transistor (MOSFET),a novel kind of chemical field-effect transistor (ChemFET) gas sensor array has been designed and fabricated.The obtained sensor consists of self-assembly polyaniline (PAN) composite film containing poly(acrylic acid) (PAA) which was used as gate material of MOSFET instead of conventional metallic gate.The UV-Vis absorption spectra of PAN/PAA films were characterized.The NO_2 gas sensitive property of the ChemFET sensor array was also investigated.Results show that the drain current of devices increases with increasing of back-side voltage,and decreases with the increase of NO_2 concentration when the NO_2 concentration is below 20μg/g.The temperature dependence of ChemFET sensor array shows that the drain current of ChemFET sensor decreases with increasing of temperature.展开更多
We have developed and studied a novel high-strength glass-ionomer cement system composed of poly(acrylic acid) with different molecular architectures. These poly(acrylic acid) polymers were synthesized via ATRP techni...We have developed and studied a novel high-strength glass-ionomer cement system composed of poly(acrylic acid) with different molecular architectures. These poly(acrylic acid) polymers were synthesized via ATRP technique. The effects of arm number and branching on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cements were evaluated. The results showed that unlike the star-shaped polymer synthesis both hyperbranched and star-hyperbranched polymers syntheses proceed slowly at the early stage but accelerate at the later stage. The higher the arm number and initiator concentration are, the faster the ATRP reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer aqueous solution is and the lower the mechanical strengths of the formed cement are. The mechanical strengths of three synthesized polymers-composed experimental cements were very similar to each other but much higher than those of Fuji II LC. The experimental cements were 31% - 53% in CS, 37% - 55% in compressive modulus, 80% - 126% in DTS, 76% - 94% in FS, 4% - 21% in FT and 53% - 96% in KHN higher than Fuji II LC. For wear test, the experimental cements were only 5.4% - 13% of abrasive and 6.4% - 12% of attritional wear depths of Fuji II LC in each wear cycle. The one-month aging study also showed that all the experimental cements increased their CS continuously during 30 days, unlike Fuji II LC.展开更多
The compatibility and dynamics of latex bidirectional/nterpenetrating polymer networks (LBIPNs) and latex IPN(LIPN) of poly(vinyl acetate)(PVAc) and poly (butyl acrylate )(PBA) are investigated by means of dynamic mec...The compatibility and dynamics of latex bidirectional/nterpenetrating polymer networks (LBIPNs) and latex IPN(LIPN) of poly(vinyl acetate)(PVAc) and poly (butyl acrylate )(PBA) are investigated by means of dynamic mechanical spectroscopy (DMS) and nuclear magnetic resonance (NMR) techniques. The results of DMS show that the compatibility of the LBIPNs is much better than that of the corresponding LIPN and depends to, a large extent on the distribution of PVAc both in the core and in the shell. The results of NMR measurements indicate that the rotational correlation times of the side- groups of PBA in the LBIPN are longer than those in the LIPN. The relation between the ^(13)C linewidths of PBA and temperature is also discussed.展开更多
基金This work has been supported by the National Science Foundation of China,the Youth Science Foundation of Academia Sinica,the China Postdoctoral Science Foundation and Polymer Physics Laboratory, Academia Sinica.
文摘A full-relaxation optimization of molecule and the popular MM2 force field are employed to obtain the geometry parameters and the conformational energy surface of a meso or a racemic dyad of poly(methyl acrylate) (PMA) with a specified carbonyl-bond orientation in side-groups. It is found that the conformational energy maps calculated here considerably differ from those calculated with the rigid molecular model as reported in the earlier studies. The g(-) state cannot be omitted in the obtained contour maps. Two important conformers tg(-) and g(-t) with energy minima were newly detected for a racemic dyad. The analysis on the conformations with energy minima confirmed that the ester groups are not always perpendicular to the plane defined by the two adjacent skeletal bonds and may change their relative orientations to meet the requirement of lower energies during the conformational state transition. Instead of the early way of adjusting the interaction energy parameters to fit the experimental data, we attempt to predict unperturbed chain dimensions via the reliable force field and the configurational statistical mechanics. The proposed scheme with three rotational states identified from the contour maps allowed us to satisfactorily reproduce the experimental dimensions of random PMA chains.
文摘The simultaneous γ-ray-radiation-induced grafting polymerization of acrylic acid on ex- panded polytetrafluoroethylene (ePTFE) film was investigated. It was found that the degree of grafting (DG) of poly(acrylic acid) (PAA) can be controlled by the monomer concentration, absorbed dose, and dose rate under an optimal inhibitor concentration of [Fe2+]=18 mmol/L. SEM observation showed that the macroporous structure in ePTFE films would be covered gradually with the increase of the DG of PAA. The prepared ePTFE-g-PAA film was im- mersed in a neutral silver nitrate solution to fabricate an ePTFE-g-PAA/Ag hybrid film after the addition of NaBH4 as a reduction agent of Ag+ to Ag atom. SEM, XRD, and XPS results proved that Ag nanoparticles with a size of several tens of nanometers to 100 nanometers were in situ immobilized on ePTFE film. The loading capacity of Ag nanoparticles could be tuned by the DG of PAA, and determined by thermal gravimetric analysis. The quart- titative antibacterial activity of the obtained ePTFE-g-PAA/Ag hybrid films was measured using counting plate method. It can kill all the Escherichia coli in the suspension in 1 h. Moreover, this excellent antibacterial activity can last at least for 4 h. This work provides a facile and practical way to make ePTFE meet the demanding antimicrobial requirement in more and more practical application areas.
基金Projects(21176264,21476265)supported by the National Natural Science Foundation of China
文摘The pretreatment for the removal of small molecules from poly(acrylic acid) sodium (PAAS) solution by continuous diafiltration was investigated using ultrafiltration membrane. The effects of PAAS concentration, pH, trans-membrane pressure and pretreatment time on the permeate concentration and permeate flux were studied. The results show that the necessary pretreatment time (NPT) increases with PAAS concentration, decreases with TMP. The change trend of permeate flux with time is affected by pH. The permeate fluxes rapidly decrease from the start, and then increase gradually to stable values at pH 5.0, pH 7.0 and pH 9.3. However, it decreases gradually with time till a state value at pH 3.0 (iso-electric point, IEP). The removal of small molecules is easy at pH greater than iso-electric point (IEP). The change of filtration potential with time indicates the similar trend to that of permeation concentration, but the former is more convenient for indication of NPT.
基金Deputyship for Research&Innovation,Ministry of Education in Saudi Arabia for funding this research work。
文摘The novel polymer metal chelate electrolytes(polychelates)were prepared by incorporation of cobalt sulfate(Co)into poly(acrylic acid)(PAA)host matrix.Quasi-solid state supercapacitor devices were fabricated using polychelates,PAA-Co X(X:3,5,7,and 10)where X represents the doping fraction(w/w)of Co in PAA.All polymer metal electrolytes were showed excellent bending-stretching properties,thermal stability and electrochemical durability with an optimum ionic conductivity of 3.15×10^(-4) S cm^(-1).Hierarchically porous activated carbon and nano-sized conductive carbon were used to form carbon composite symmetrical device electrodes.The electric double-layer capacitor(EDLC)and redox reactions of Co-incorporated polychelates at the interfaces of porous activated carbon provided an optimum specific capacitance of 341.33 F g^(-1) with a device of PAA-Co7,which is at least 15 times enhancement compared to the device of pristine PAA.The PAA-Co7 device also provided energy density of 21.25 Wh kg^(-1) at a power density of 117.69 W kg^(-1).A prolonged cyclic stability of the device exhibited superior capacitive performance after 10,000 charge-discharge cycles and the maintained 90%of its initial performance.In addition,the supercapacitor with a dimension of 1.5 cm×3 cm containing PAA-Co7 successfully operated the red-blue-green(RGB)LED light.
基金This work was supported by the Youth Science Foundation of Acedemia Sinica the China Postdoctoral Science Foundation, the National Natural Science Foundation of China, and Polymer Physics Laboratory,Academia Sinica
文摘A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad. These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.
基金This work was supported in part by the National Science Foundation of China (No. 20504015)the starting project for young teachers from the Ministry of Education, China.
文摘Monodisperse poly(poly(ethyleneglycol) methyl ether acrylate-co-acrylic acid) (poly(PEGMA-co-AA)) microspheres were prepared by distillation-precipitation polymerization with divinylbenzene (DVB) as crosslinker with 2,2'- azobisisobutyronitrile (AIBN) as initiator in neat acetonitrile without stirring. Under various reaction conditions, four distinct morphologies including the sol, microemulsion, microgels and microspheres were formed during the distillation of the solvent from the reaction system. A 2D morphological map was established as a function of crosslinker concentration and the polar monomer AA concentration, in comonomer feed in the transition between the morphology domains. The effect of the covalent crosslinker DVB on the morphology of the polymer network was investigated in detail at AA fraction of 40 vol%. The ratios of acid to ethylene oxide units presenting in the comonomers dramatically affected the polymer-polymer interaction and hence the morphology of the resultant polymer network. The covalent crosslinking by DVB and the hydrogen bonding crosslinking between two acid units as well as between the acid and ethylene oxide unit played key roles in the formation of monodisperse polymer microspheres.
文摘This research explored replacing acrylic core-shell impact modifier (AIM) by silica fume to toughen PVC. 100%, 75%, 50% and 25% of AIM (8 phr) were substituted by silica fume in PVC respectively, and then processed by dry blending and twin-screw extrusion. Severe silica fume agglomeration was observed by scanning electron microscope (SEM) in the PVC matrix when 8 phr pure silica fume was used and processed by screw speed of 20 rpm. Its tensile strength was thereby reduced by 38% comparing to unmodified PVC. The silica fume was successfully dispersed while the screw speed was slowed down to 10 rpm to give a stronger screw torque and a longer melt residential time in the extruder. The tensile strength was ’recovered’ to a level comparable to unmodified PVC. Impact test were performed on all formulations extruded at 10 rpm screw speed and synergetic toughening effect was found with 50% substitution and it had the impact strength that was comparable to 8 phr pure AIM toughened PVC.
基金The authors are grateful for the financial support of the National Natural Science Foundation of China (No. 20174029)National Key Basic Research and Development Program (2005CB623903).
文摘Novel interpenetrating polymer network (IPN) hydrogels based on konjac glucomannan (KGM) and poly(acrylic acid) (PAA) were prepared by polymerization and cross-linking of acrylic acid (AA) in the pre-fabricated KGM gel. The IPN gel was analyzed by FF-IR. The studies on the equilibrium swelling ratio of IPN hydrogels revealed their sensitive response to environmental pH value. The results of in vitro degradation showed that the IPN hydrogels retain the enzymatic degradation character of KGM.
文摘Using poly(acrylic acid) (PAA) aqueous solution, NaOH aqueous solution, aniline (An) and ammonium persulfate (APS), PAn-PAA hydrogels with a semi-interpenetrating structure connected by physical interlocks, chemical ion bonds and hydrogen bonds were prepared. The swelling properties of the hydrogels in solutions of different pH values (adjusted by adding NaOH or HCI) were studied. All the hydrogels prepared have similar swelling curves (the curves of equilibrium swelling ratio vs. pH value) and reach their maximum swelling at pH of 8 - 10. The maximum swelling ratio of the hydrogels is dependent on composition, including molecular weight of PAA, polymer content of the hydrogel, and molar ratios of AA to An, APS to An, and NaOH to AA, And the compositional dependence of the swelling capacity of PAn-PAA hydrogels was also studied.
文摘A new star-hyperbranched poly(acrylic acid) has been synthesized and incorporated into dental glassionomer cement for enhanced mechanical strengths. The effects of arm number and branching on viscosity of the polymer aqueous solution and mechanical strengths of the formed experimental cement were evaluated. It was found that the higher the arm number and the more the branching, the lower the viscosity of the polymer solution as well as the mechanical strengths of the formed cement. It was also found that the experimental cement exhibited significantly higher mechanical strengths than commercial Fuji II LC. The experimental cement was 51% in CS, 55% in compressive modulus, 118% in DTS, 82% in FS, 18% in FT and 85% in KHN higher than Fuji II LC. The experimental cement was only 6.7% of abrasive and 10% of attritional wear depths of Fuji II LC in each wear cycle. It appears that this novel experimental cement is a clinically attractive dental restorative and may potentially be used for high-wear and high-stress-bearing site restorations.
文摘A novel biopolymer-based superabsorbent hydrogel composite based on kappa-carrageenan (κC) have been prepared via graft copolymerization of acrylic acid (AA) in the presence of bentonite powder using methylenebisacrylamide (MBA) as a crosslinking agent and ammonium persulfate (APS) as an initiator. The hydrogel structure was confirmed using FTIR spectroscopy and the morphology of the samples was examined by scanning electron microscopy (SEM). The affecting variables onto graft polymerization (i.e. AA, MBA and APS concentration, as well as the bentonite amount) were systematically optimized to achieve a hydrogel with swelling capacity as high as possible. The results of Brunauer–Emmett–Teller (BET) analysis showed that the average pore diameter of the synthesized hydrogel was 11.5 nm. The effect of various salt media and solutions with different pHs on the swelling of the superabsorbent was also studied.
基金This project was supported by China Postdoctoral Science Foundation and National Natural Science Foundation of China(No.59873001).
文摘New liquid crystalline monomer,2,5-bis[(4'-methoxyphenoxy)carbonyl]phenyl acrylate was successfully synthesized.Polyacrylate with laterally attached mesogens via ei;ter linkage was also derived.This polymer forms an enantiotropic liquid crystal phase while its monomer exhibits a metastable nematic phase with respect to the crystalline state.However,its liquid crystallinity is very low as compared to that of poly{2,5-bis[(4'-methoxyphenoxy)carbonyl]-styrene}.
文摘In this paper, we present the development of flexible zinc–air battery. Multiwalled carbon nanotubes(MWCNTs) were added into electrodes to improve their performance. It was found that MWCNTs were effective conductive additive in anode as they bridged the zinc particles. Poly(3,4-ethylenedioxythiophene)polystyrene sulfonate(PEDOT:PSS) was applied as a co-binder to enhance both the conductivity and flexibility. A poly(acrylic acid)(PAA) and polyvinyl alcohol(PVA) coated paper separator was used to enhance the battery performance where the PVP–PAA layer facilitated electrolyte storage. The batteries remained functional under bending conditions and after bending. Multiple design optimizations were also carried out for storage and performance purposes.
文摘In this paper we will try to create, propose and analyze structure of a slow light device, based on plasmonic induced transparency in a metal-dielectric-metal based ring resonator. Group index by first design about 37 and second design about 35 earned. The proposed dielectric material is Poly Methyl Meta Acrylate (PMMA) sandwiched by gold metal cladding. Finite Element Method-con- ducted Electromagnetic simulations are employed to evaluate the plasmonic designs for behavior of slow light. The signal and pump wavelength are assumed to be 830 nm and 1550 nm respectively in the systems. The overall length of the plasmonic slow light system is 600 nm. In a wide range of frequency bands, the optical properties of metals can be described with a plasma model. The optical signal can be achieved with the use of surface waves on the boundary between the insulating materials and metals with dimensions smaller than the diffraction limit. The main goal, is estimation of optical characteristics such as bandwidth, the Real and Imaginary parts of refractive index, group velocity and slow down factor in such optical devices. The obtained results and observations, can be useful in basic research and the production of highly integrated plasmonic devices.
基金Project(51204211) supported by the National Natural Science Foundation of ChinaProject(2012M521543) supported by the China Postdoctoral Science Foundation
文摘High dispersed carbon black was applied for LiFePO4 cathodes as conductive agent.Nano-conductive carbon agent was pre-dispersed with poly acrylic acid(PAA) as dispersant in organic N-methyl-pyrrolidone(NMP) solvent system.The dispersion property of nano-conductive carbon agent was evaluated using particle size distribution measurements,scanning electron microscopy(SEM) and transmission electron microscope(TEM).LiFePO4 cathode with as-received nano-conductive carbon agent(SP) and LiFePO4 cathode with pre-dispersed nano-conductive carbon agent(SP-PAA) were examined by scanning electron microscopy(SEM),cyclic voltammetry(CV),electrochemical impendence spectroscopy(EIS) and charge/discharge cycling performance.Results show that the dispersion property of carbon black is improved by using PAA as the dispersant.The LiFePO4 cathodes with SP-PAA exhibit improved rate behaviors(4C,135.1 mAh/g) and cycle performance(95%,200 cycles) compared to LiFePO4 cathodes with SP(4C,103.9 mAh/g and 83%,200 cycles).Because pre-dispersed carbon black(SP-PAA) is dispersed homogeneously in the dried composite electrode to form a more uniform conductive network between the active material particles,electrochemical performances of the LiFePO4 cathodes are improved.
基金Supported by the National Natural Science Foundation of China(No.51273146 and 51103061).
文摘Poly(n-alkyl acrylate) with long side groups,namely,poly(lauryl acrylate)(PLA) was synthesized by reversible addition-fragmentation chain transfer(RAFT) polymerization,and the trithioester terminal groups were converted to thiol by reducing reaction.Grafting of the obtained polymer onto nano-silica modified with 3-(methacryloxy)propyl-trimethoxysilane(SiO2-MPS) was conducted by thiol-ene ‘click chemistry'.PLA was characterized by proton nuclear magnetic resonance(1H NMR) and gel permeation chromatography(GPC).Fourier transform infrared(FTIR) spectrometry and thermogravimetric analysis(TGA) were used to demonstrate the grafting reaction,and the grafted hairy nano-silica(SiO2-g-PLA) was viewed under a transmission electron microscope(TEM).According to TGA,grafting ratio and grafting density of SiO2-g-PLA are 30.27% and 0.013 chain/nm2,respectively.The static water contact angle of SiO2-g-PLA is (80.10±2.97)°,which ensures its hydrophobicity.Dispersion experiment was carried out to confirm its dispersibility in mixed solvents,indicating its potential application in coatings or composites.
基金This work is supported by the National Science Foundation of China (Grants No. 60372002, 60425101)
文摘Based on conventional metal-oxide-semiconductor field-effect transistor (MOSFET),a novel kind of chemical field-effect transistor (ChemFET) gas sensor array has been designed and fabricated.The obtained sensor consists of self-assembly polyaniline (PAN) composite film containing poly(acrylic acid) (PAA) which was used as gate material of MOSFET instead of conventional metallic gate.The UV-Vis absorption spectra of PAN/PAA films were characterized.The NO_2 gas sensitive property of the ChemFET sensor array was also investigated.Results show that the drain current of devices increases with increasing of back-side voltage,and decreases with the increase of NO_2 concentration when the NO_2 concentration is below 20μg/g.The temperature dependence of ChemFET sensor array shows that the drain current of ChemFET sensor decreases with increasing of temperature.
文摘We have developed and studied a novel high-strength glass-ionomer cement system composed of poly(acrylic acid) with different molecular architectures. These poly(acrylic acid) polymers were synthesized via ATRP technique. The effects of arm number and branching on reaction kinetics, viscosity, and mechanical strengths of the formed polymers and cements were evaluated. The results showed that unlike the star-shaped polymer synthesis both hyperbranched and star-hyperbranched polymers syntheses proceed slowly at the early stage but accelerate at the later stage. The higher the arm number and initiator concentration are, the faster the ATRP reaction was. It was also found that the higher the arm number and branching that the polymer had, the lower the viscosity of the polymer aqueous solution is and the lower the mechanical strengths of the formed cement are. The mechanical strengths of three synthesized polymers-composed experimental cements were very similar to each other but much higher than those of Fuji II LC. The experimental cements were 31% - 53% in CS, 37% - 55% in compressive modulus, 80% - 126% in DTS, 76% - 94% in FS, 4% - 21% in FT and 53% - 96% in KHN higher than Fuji II LC. For wear test, the experimental cements were only 5.4% - 13% of abrasive and 6.4% - 12% of attritional wear depths of Fuji II LC in each wear cycle. The one-month aging study also showed that all the experimental cements increased their CS continuously during 30 days, unlike Fuji II LC.
文摘The compatibility and dynamics of latex bidirectional/nterpenetrating polymer networks (LBIPNs) and latex IPN(LIPN) of poly(vinyl acetate)(PVAc) and poly (butyl acrylate )(PBA) are investigated by means of dynamic mechanical spectroscopy (DMS) and nuclear magnetic resonance (NMR) techniques. The results of DMS show that the compatibility of the LBIPNs is much better than that of the corresponding LIPN and depends to, a large extent on the distribution of PVAc both in the core and in the shell. The results of NMR measurements indicate that the rotational correlation times of the side- groups of PBA in the LBIPN are longer than those in the LIPN. The relation between the ^(13)C linewidths of PBA and temperature is also discussed.