A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating w...A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.展开更多
In this paper,the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)and PHBV/Cloisite 30B(C30B)(3 wt%)bionanocomposite prepared by melt compounding,were evaluated at various doses,...In this paper,the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)and PHBV/Cloisite 30B(C30B)(3 wt%)bionanocomposite prepared by melt compounding,were evaluated at various doses,i.e.,5,15,20,50 and 100 kGy at room temperature in air.Changes in molecular weight,morphology and physical properties were investigated.The study showed that the main degradation mechanism occurring in gamma irradiation in both Cast PHBV and C-PHBV/3C30B bionanocomposite is chain scission,responsible for the decrease of molecular weight.Differential scanning calorimetry(DSC)data indicated a regular decrease in crystallization temperature,melting temperature and crystallinity index for all irradiated samples with increasing the dose.Further,DSC thermograms of both Cast PHBV and PHBV bionanocomposite exhibited double melting peaks due probably to changes in the PHBV crystal structure.Tensile and DMA data showed a reduction in Young’s modulus,strength,elongation at break and storage modulus with the radiation dose;the decrease was however more pronounced for Cast PHBV.The morphological damages were much less pronounced for the PHBV bionanocomposite sample compared to Cast PHBV,for which some irregularities and defects were observed at 100 kGy.This study highlighted the ability of C30B to counterbalance the detrimental effect of radiolytic degradation on the functional properties of PHBV up to 100 kGy,thus acting as a potential anti-rad.展开更多
In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental imp...In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental implants.The corrosion resistance of Gd^(3+)-modified PHBV-coated Ti6Al4V was studied by electrochemical and immersion tests,respectively,whereas CCK-8 and RT-PCR evaluated the biocompatibility to human gingival fibroblasts(HGFs)and human umbilical vein endothelial cells(HUVECs).It was found that the Gd^(3+)-modified PHBV coating could enhance the corrosion resistance of Ti6Al4V.In vitro cell tests showed that PHBV coatings with and without Gd^(3+) addition could promote adhesion and proliferation of HGFs and HUVECs,showing a Gd^(3+) content-dependent manner.Moreover,it was found that the PDA-PHBV@1Gd showed the best proliferation to HGFs by up-regulating gene expressions of VINCULIN,ITGB1,and ITGA3,whereas the best response to HUVECs with the highest gene expression of eNOS and HIF-1αgenes was found in the PDA-PHBV@5Gd-coated group.展开更多
基金Project (2010DFA32270) supported by International Science & Technology Cooperation Program of ChinaProject (2010) supported by Scientific Research Foundation for the Returned Oversea Scholars of Ministry of Education of China
文摘A composite material was fabricated by applying a biodegradable drug delivery coating,consisting of poly(3-hydroxyburyrate-co-3-hydroxyvalerate)(PHBV) and icariin,to an anodic oxidized titanium plate.The coating was prepared by evaporating chloroform solution containing PHBV and icariin on the titanium plate under vacuum condition.Icariin/PHBV coated titanium plates significantly enhance the proliferation of MG-63 cells compared with the PHBV coated and anodic oxidized ones.Increased icariin contained in the coating displays an elevated influence on cell proliferation.The results show that icariin gradually releases from the coating to cells mainly through the phospholipid-based cellular membrane instead of the culture medium.The overall results suggest that the novel icariin/PHBV coating can be used to enhance the bioactivity of titanium based orthopedic implants.
文摘In this paper,the effects of gamma irradiation on Cast poly(3-hydroxybutyrate-co-3-hydroxyvalerate)(PHBV)and PHBV/Cloisite 30B(C30B)(3 wt%)bionanocomposite prepared by melt compounding,were evaluated at various doses,i.e.,5,15,20,50 and 100 kGy at room temperature in air.Changes in molecular weight,morphology and physical properties were investigated.The study showed that the main degradation mechanism occurring in gamma irradiation in both Cast PHBV and C-PHBV/3C30B bionanocomposite is chain scission,responsible for the decrease of molecular weight.Differential scanning calorimetry(DSC)data indicated a regular decrease in crystallization temperature,melting temperature and crystallinity index for all irradiated samples with increasing the dose.Further,DSC thermograms of both Cast PHBV and PHBV bionanocomposite exhibited double melting peaks due probably to changes in the PHBV crystal structure.Tensile and DMA data showed a reduction in Young’s modulus,strength,elongation at break and storage modulus with the radiation dose;the decrease was however more pronounced for Cast PHBV.The morphological damages were much less pronounced for the PHBV bionanocomposite sample compared to Cast PHBV,for which some irregularities and defects were observed at 100 kGy.This study highlighted the ability of C30B to counterbalance the detrimental effect of radiolytic degradation on the functional properties of PHBV up to 100 kGy,thus acting as a potential anti-rad.
基金financially supported by the National Natural Science Foundation of China(No.51801198)the Funds of Scientific and Technological Plan of Fujian Province(No.2020Y0083)+3 种基金the National Key Technologies Research and Development Program of China(2016YFC1100502)the Joint Funds of Scientific and Technological Innovation Program of Fujian Province(No.2017Y9059)the Natural Science Foundation of Fujian Province(No.201910027)the Funds of Scientific and Technological Plan of Fujian Province(No.2020L3026)。
文摘In this study,we fabricated poly(3-hydroxybutyrate-3-hydroxyvalerate)(PHBV)coatings doped with Gd^(3+)(1,5,and 10×10^(−4) mol/L)on Ti6Al4V alloy for the first time to promote soft tissue sealing around dental implants.The corrosion resistance of Gd^(3+)-modified PHBV-coated Ti6Al4V was studied by electrochemical and immersion tests,respectively,whereas CCK-8 and RT-PCR evaluated the biocompatibility to human gingival fibroblasts(HGFs)and human umbilical vein endothelial cells(HUVECs).It was found that the Gd^(3+)-modified PHBV coating could enhance the corrosion resistance of Ti6Al4V.In vitro cell tests showed that PHBV coatings with and without Gd^(3+) addition could promote adhesion and proliferation of HGFs and HUVECs,showing a Gd^(3+) content-dependent manner.Moreover,it was found that the PDA-PHBV@1Gd showed the best proliferation to HGFs by up-regulating gene expressions of VINCULIN,ITGB1,and ITGA3,whereas the best response to HUVECs with the highest gene expression of eNOS and HIF-1αgenes was found in the PDA-PHBV@5Gd-coated group.