Paclitaxel (PTX), one of the most effective cytotoxins for the treatment of breast and lung cancer, is limited by its severe side effects and low tumor selectivity. In this work hollow-poly(4-vinylpyridine) (holl...Paclitaxel (PTX), one of the most effective cytotoxins for the treatment of breast and lung cancer, is limited by its severe side effects and low tumor selectivity. In this work hollow-poly(4-vinylpyridine) (hollow-p4VP) nanoparticles (NPs) have been used for the first time to generate PTX@p4VP NPs, employing a novel technique in which a gold core in the center of the NP is further oxidized to produce the hollow structure into which PTX molecules can be incorporated. The hollow-p4VP NPs exhibit good physicochemical properties and displayed excellent biocompatibility when tested on blood (no hemolysis) and cell cultures (no cytotoxicity). Interestingly, PTX@p4VP NPs significantly increased PTX cytotoxicity in human lung (A-549) and breast (MCF-7) cancer cells with a significant reduction of PTX ICs0 (from 5.9 to 3.6 nM in A-549 and from 13.75 to 4.71 nM in MCF-7). In addition, PTX@p4VP caused a decrease in volume of A-549 and MCF-7 multicellular tumor spheroids (MTS), an in vitro system that mimics in vivo tumors, in comparison to free PTX. This increased antitumoral activity is accompanied by efficient cell internalization and increased apoptosis, especially in lung cancer MTS. Our results offer the first evidence that hollow- p4VP NPs can improve the antitumoral activity of PTX. This system can be used as a new nanoplatform to overcome the limitations of current breast and lung cancer treatments.展开更多
Poly(4-vinylpyridine)(P4-VP) nanofiber and fluoresent poly(4-vinylpyridine)/porphyrin(P4-VP/TPPA) nanofiber were respectively prepared by electrospinning. The effect of the concentration of P4-VP/dimethylforma...Poly(4-vinylpyridine)(P4-VP) nanofiber and fluoresent poly(4-vinylpyridine)/porphyrin(P4-VP/TPPA) nanofiber were respectively prepared by electrospinning. The effect of the concentration of P4-VP/dimethylformamide (DMF) electrospinning solutions on the morphology of P4-VP nanofiber was investigated and it was found that the average diameter of the nanofiber of P4-VP/DMF increased with the increase of the concentration of the spinning solution. After the addition of TPPA to the P4-VP/DMF spinning solution, the diameter of P4-VP/TPPA nanofiber became even due to the increase of the conductivity of the P4-VP/DMF-TPPA solution. The photoluminescent(PL) spectral analysis indicates that the emission peak position of P4-VP/TPPA nanofiber is almost the same as that of pure TPPA at about 650 nm without peak shift, and when it was stored for 20 days, the emission peak of P4-VP/TPPA nanofiber is also at 650 nm, indicating that the fluorescent property of P4-VP/TPPA nanofiber is stable. Fourier-transform iufrared(FTIR) spectrum confirms the chemical composition of the resulting P4-VP/TPPA composite nanofiber.展开更多
The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the c...The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.展开更多
The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, suc...The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, macromolecular carder (PSAA), and ratio of styrene to 4-vinypyridine (g/g), on the copolymerization yield of styrene and 4-Vinylpyridine was investigated. The results showed that the copolymerization of polar monomers with olefins occurred efficiently and the catalytic activity of polymer-supported catalyst was higher than that of the similar small molecular catalysts. The activity of PSAA.Nd complex increased with in- creasing Al/Nd molar ratios and decreased with increasing polymerization time. The highest activity of PSAA'Nd was observed at 120 min, and the highest yield was found at the ratio of styrene to 4-vinylpyridine of 4:2. DSC analysis presented that the resulted polymer had only one glass transition temperature, and showed very good thermal stability.展开更多
Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for C...Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp_2ZrCl_2catalyst Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy andscanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp_2ZrCl_2 depend on the size ofpolyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp_2ZrCl_2 existon the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.展开更多
Polymerization of 4-vinylpyridine by complex catalyst of neodymium chloride was studied. The influence of Al/Nd (molar ratio), concentration of catalyst, reaction time and temperature on polymerization of 4-vinylpyrid...Polymerization of 4-vinylpyridine by complex catalyst of neodymium chloride was studied. The influence of Al/Nd (molar ratio), concentration of catalyst, reaction time and temperature on polymerization of 4-vinylpyridine was investigated. The results show that different kinds of ligand in the rare earth complex have an effect on the catalytic activity of the complex. The catalytic activity of the rare earth complex is higher than that of simple rare earth chloride. The catalytic activity of polymer-supported catalyst is higher than those of the similar small molecular system.展开更多
Poly(styrene-co-4-vinylpyridine)-neodymium complexes(NdCl_3·PS4VPY)with variouscontents of the functional group and neodymium have been prepared and characterized.Theinfrared and X-ray photoelectron spectra indic...Poly(styrene-co-4-vinylpyridine)-neodymium complexes(NdCl_3·PS4VPY)with variouscontents of the functional group and neodymium have been prepared and characterized.Theinfrared and X-ray photoelectron spectra indicate that uncoordinated 4-vinylpyridine(4VPY)unitsremain in the NdCl_3·PS4VPY complexes.The catalytic behaviour of NdCl_3·PS4VPY was described briefly.展开更多
The catalytic activity of poly(styrene-cryli- caeid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-vinylpyridine was studied. The influence of various factors, suc...The catalytic activity of poly(styrene-cryli- caeid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, and ratio of styrene to 4-vinypyridine (g· g^-1 ), on copolymerization of styrene and 4-Vinylpridine was investigated. The results show that the copolymerization of polar monomers with olefins occurs efficiently. The catalytic activity of polymer-supported catalyst is higher than that of the similar small molecule catalysts. The activity of PSAA· Nd complex increases with increasing Al/Nd ratios and decreases with increasing polymerization time, the highest activity of PSAA· Nd is observed at 120 min. High yield is found at the ratio of styrene to 4-vinylpyridine is 4:2. The resulted polymer shows very good thermal stability.展开更多
In the UV-Vis spectra of pure light-scattering systems, there is an exponential relationship between absorbance and wavelength (A = Kλ^-n). Here, the exponent n is named as flocculation-coagulation parameter. In th...In the UV-Vis spectra of pure light-scattering systems, there is an exponential relationship between absorbance and wavelength (A = Kλ^-n). Here, the exponent n is named as flocculation-coagulation parameter. In the present paper, the effects of different additives on the stability of poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (poly(Bis-co-4-VP)) microgel dispersion were studied in detail via this parameter. The results showed that the stability of the dispersion mainly comes from the ionization of pyridine groups, making the microgel positively charged on its surface. This was confirmed by the measurement of Zeta potential and the result of conductometric titration. The result of fluorescence analysis indicated that the hydrophobicity in the microgels is enhanced with the increase in total 4-VP unit content.展开更多
An facile and efficient protocol for the synthesis of 13‐aryl‐indeno[1,2‐b]naphtha[1,2‐e]pyran‐ 12(13H)‐ ones has been developed that proceeds via the one‐pot three‐component sequential reaction of an aromatic...An facile and efficient protocol for the synthesis of 13‐aryl‐indeno[1,2‐b]naphtha[1,2‐e]pyran‐ 12(13H)‐ ones has been developed that proceeds via the one‐pot three‐component sequential reaction of an aromatic aldehyde with β‐naphthol and 2H‐indene‐1,3‐dione under solvent‐free conditions in the presence of a poly(4‐vinylpyridinium)hydrogen sulfate(P(4‐VPH)HSO4) catalyst. The catalyst can be reused several times, making this procedure facile, practical, and sustainable. The simple experimental procedure, solvent‐free reaction conditions, use of an inexpensive catalyst, short react time, and excellent yields are some of the major advantages of this methodology.展开更多
Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of t...Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.展开更多
Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger spe...Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues.展开更多
4(3H)-Quinazolinones have been synthesized from poly(ethylene glycol) (PEG) supported aza-Wittig reaction. 2-Dialkylamino- 4(3H)-quinazolinones 6 were synthesized efficiently by reaction of secondary amine wit...4(3H)-Quinazolinones have been synthesized from poly(ethylene glycol) (PEG) supported aza-Wittig reaction. 2-Dialkylamino- 4(3H)-quinazolinones 6 were synthesized efficiently by reaction of secondary amine with PEG-supported carbodiimides 4, which were obtained from aza-Wittig reaction of PEG-supported iminophosphoranes 3 with isocyanates.展开更多
The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,...The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.展开更多
Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a ...Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).展开更多
文摘Paclitaxel (PTX), one of the most effective cytotoxins for the treatment of breast and lung cancer, is limited by its severe side effects and low tumor selectivity. In this work hollow-poly(4-vinylpyridine) (hollow-p4VP) nanoparticles (NPs) have been used for the first time to generate PTX@p4VP NPs, employing a novel technique in which a gold core in the center of the NP is further oxidized to produce the hollow structure into which PTX molecules can be incorporated. The hollow-p4VP NPs exhibit good physicochemical properties and displayed excellent biocompatibility when tested on blood (no hemolysis) and cell cultures (no cytotoxicity). Interestingly, PTX@p4VP NPs significantly increased PTX cytotoxicity in human lung (A-549) and breast (MCF-7) cancer cells with a significant reduction of PTX ICs0 (from 5.9 to 3.6 nM in A-549 and from 13.75 to 4.71 nM in MCF-7). In addition, PTX@p4VP caused a decrease in volume of A-549 and MCF-7 multicellular tumor spheroids (MTS), an in vitro system that mimics in vivo tumors, in comparison to free PTX. This increased antitumoral activity is accompanied by efficient cell internalization and increased apoptosis, especially in lung cancer MTS. Our results offer the first evidence that hollow- p4VP NPs can improve the antitumoral activity of PTX. This system can be used as a new nanoplatform to overcome the limitations of current breast and lung cancer treatments.
基金Supported by the National Natural Science Foundation of China(No.20674023)
文摘Poly(4-vinylpyridine)(P4-VP) nanofiber and fluoresent poly(4-vinylpyridine)/porphyrin(P4-VP/TPPA) nanofiber were respectively prepared by electrospinning. The effect of the concentration of P4-VP/dimethylformamide (DMF) electrospinning solutions on the morphology of P4-VP nanofiber was investigated and it was found that the average diameter of the nanofiber of P4-VP/DMF increased with the increase of the concentration of the spinning solution. After the addition of TPPA to the P4-VP/DMF spinning solution, the diameter of P4-VP/TPPA nanofiber became even due to the increase of the conductivity of the P4-VP/DMF-TPPA solution. The photoluminescent(PL) spectral analysis indicates that the emission peak position of P4-VP/TPPA nanofiber is almost the same as that of pure TPPA at about 650 nm without peak shift, and when it was stored for 20 days, the emission peak of P4-VP/TPPA nanofiber is also at 650 nm, indicating that the fluorescent property of P4-VP/TPPA nanofiber is stable. Fourier-transform iufrared(FTIR) spectrum confirms the chemical composition of the resulting P4-VP/TPPA composite nanofiber.
基金Supported by the Outstanding Youngs Science Foudation of Henan Province(1999)
文摘The palladium complex of the molecular complex of poly(4 vinylpyridine) with acetic acid(PVP/ HAc Pd) was prepared. Its catalytic activity for the hydrogenation of nitrobenzene was found much higher than that of the corresponding palladium complex of poly(4 vinylpyridine). In the presence of a strong inorganic alkali, especially potassium hydroxide, the catalytic activity is greatly improved. The suitable hydrogenation condition for PVP/HAc Pd is to use 0 1 mol/L ethanol solution of potassium hydroxide as the hydrogenation medium and the hydrogenation is carried out at 45 ℃.
基金Science Technology Foundation of Jilin Province (200223)
文摘The catalytic activity of poly(styrene-acrylic acid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-Vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, macromolecular carder (PSAA), and ratio of styrene to 4-vinypyridine (g/g), on the copolymerization yield of styrene and 4-Vinylpyridine was investigated. The results showed that the copolymerization of polar monomers with olefins occurred efficiently and the catalytic activity of polymer-supported catalyst was higher than that of the similar small molecular catalysts. The activity of PSAA.Nd complex increased with in- creasing Al/Nd molar ratios and decreased with increasing polymerization time. The highest activity of PSAA'Nd was observed at 120 min, and the highest yield was found at the ratio of styrene to 4-vinylpyridine of 4:2. DSC analysis presented that the resulted polymer had only one glass transition temperature, and showed very good thermal stability.
基金National Natural Science Foundation of China (No. 20272062)
文摘Polyethylene (PE) grafting 4-vinylpyridine copolymers has been produced as powders of different rushes by theirradiation method. After treatment with methylaluminoxane (MAO), the copolymers were used as supports for Cp_2ZrCl_2catalyst Results of X-ray photoelectron spectroscopy, Fourier transforms infrared spectroscopy, ultraviolet spectroscopy andscanning electron microscope measurements show that the catalytic sites have been linked through MAO on the PE-graft-4-vinylpyridine (PEVP). The percentages of grafting 4-vinylpyridine and supported Cp_2ZrCl_2 depend on the size ofpolyethylene powder. The smaller the polyethylene powder, the more percent of 4-vinylpyridine groups and Cp_2ZrCl_2 existon the polyethylene chains, and the PEVP-supported catalyst has a relatively high activity for ethylene polymerization.
文摘Polymerization of 4-vinylpyridine by complex catalyst of neodymium chloride was studied. The influence of Al/Nd (molar ratio), concentration of catalyst, reaction time and temperature on polymerization of 4-vinylpyridine was investigated. The results show that different kinds of ligand in the rare earth complex have an effect on the catalytic activity of the complex. The catalytic activity of the rare earth complex is higher than that of simple rare earth chloride. The catalytic activity of polymer-supported catalyst is higher than those of the similar small molecular system.
基金The project was supported by the National Natural Science Foundation of China
文摘Poly(styrene-co-4-vinylpyridine)-neodymium complexes(NdCl_3·PS4VPY)with variouscontents of the functional group and neodymium have been prepared and characterized.Theinfrared and X-ray photoelectron spectra indicate that uncoordinated 4-vinylpyridine(4VPY)unitsremain in the NdCl_3·PS4VPY complexes.The catalytic behaviour of NdCl_3·PS4VPY was described briefly.
文摘The catalytic activity of poly(styrene-cryli- caeid) (PSAA) supported neodymium chloride (NdCl3) complex for the copolymerization of styrene and 4-vinylpyridine was studied. The influence of various factors, such as Al/Nd molar ratio, reaction time, and ratio of styrene to 4-vinypyridine (g· g^-1 ), on copolymerization of styrene and 4-Vinylpridine was investigated. The results show that the copolymerization of polar monomers with olefins occurs efficiently. The catalytic activity of polymer-supported catalyst is higher than that of the similar small molecule catalysts. The activity of PSAA· Nd complex increases with increasing Al/Nd ratios and decreases with increasing polymerization time, the highest activity of PSAA· Nd is observed at 120 min. High yield is found at the ratio of styrene to 4-vinylpyridine is 4:2. The resulted polymer shows very good thermal stability.
基金This work was supported by the National Natural Science Foundation of China(Nos.90206020 and 29901001).
文摘In the UV-Vis spectra of pure light-scattering systems, there is an exponential relationship between absorbance and wavelength (A = Kλ^-n). Here, the exponent n is named as flocculation-coagulation parameter. In the present paper, the effects of different additives on the stability of poly(N,N'-methylenebisacrylamide-co-4-vinylpyridine) (poly(Bis-co-4-VP)) microgel dispersion were studied in detail via this parameter. The results showed that the stability of the dispersion mainly comes from the ionization of pyridine groups, making the microgel positively charged on its surface. This was confirmed by the measurement of Zeta potential and the result of conductometric titration. The result of fluorescence analysis indicated that the hydrophobicity in the microgels is enhanced with the increase in total 4-VP unit content.
文摘An facile and efficient protocol for the synthesis of 13‐aryl‐indeno[1,2‐b]naphtha[1,2‐e]pyran‐ 12(13H)‐ ones has been developed that proceeds via the one‐pot three‐component sequential reaction of an aromatic aldehyde with β‐naphthol and 2H‐indene‐1,3‐dione under solvent‐free conditions in the presence of a poly(4‐vinylpyridinium)hydrogen sulfate(P(4‐VPH)HSO4) catalyst. The catalyst can be reused several times, making this procedure facile, practical, and sustainable. The simple experimental procedure, solvent‐free reaction conditions, use of an inexpensive catalyst, short react time, and excellent yields are some of the major advantages of this methodology.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59833120).
文摘Poly(4-methyl-1-pentene) (PMP) hollow fiber membranes were prepared by the melt-spun and cold-stretch(MSCS) method. Scanning electronic microscopy (SEM) was used to characterize the section and surface structures of themembranes with special asymmetric structure. The preliminary results of gas permeation measurements indicated that the resultant hollow fiber membranes have the potential ability for oxygen/nitrogen separation.
基金supported by the National Natural Science Foundation of China(21576125,21776117)the China Postdoctoral Science Foundation(2017M611716,2017M611734)+1 种基金the Six talent peaks project of Jiangsu Province(XCL-014)the Zhenjiang Science&Technology Program(SH2016012)~~
文摘Exfoliation of bulk graphitic carbon nitride(g‐C3N4)into two‐dimensional(2D)nanosheets is one of the effective strategies to improve its photocatalytic properties so that the 2D g‐C3N4 nanosheets(CN)have larger specific surface areas and more reaction sites.In addition,poly‐o‐phenylenediamine(PoPD)can improve the electrical conductivity and photocatalytic activity of semiconductor materials.Here,the novel efficient composite PoPD/AgCl/g‐C3N4 nanosheets was first synthesized by a precipitation reaction and the photoinitiated polymerization approach.The obtained photocatalysts have larger specific surface areas and could achieve better visible‐light response.However,silver chloride(AgCl)is susceptible to agglomeration and photocorrosion.The PoPD/AgCl/CN composite exhibits an extremely high photocurrent density,which is three times that of CN.Obviously enhanced photocatalytic activities of PoPD/AgCl/g‐C3N4 are revealed through the photodegradation of tetracycline.The stability of PoPD/AgCl/CN is demonstrated based on four cycles of experiments that reveal that the degradation rate only decreases slightly.Furthermore,.O2^-and h+are the main active species,which are confirmed through a trapping experiment and ESR spin‐trap technique.Therefore,the prepared PoPD/AgCl/CN can be considered as a stable photocatalyst,in which PoPD is added as a charge carrier and acts a photosensitive protective layer on the surface of the AgCl particles.This provides a new technology for preparing highly stable composite photocatalysts that can effectively deal with environmental issues.
基金We gratefully acknowledge financial support of this work by the Natural Science Foundation of Hubei Province (No. 2006ABB016) the National Natural Science Foundation of China (No. 20772041) Key Project of Chinese Ministry of Education (No. 107082).
文摘4(3H)-Quinazolinones have been synthesized from poly(ethylene glycol) (PEG) supported aza-Wittig reaction. 2-Dialkylamino- 4(3H)-quinazolinones 6 were synthesized efficiently by reaction of secondary amine with PEG-supported carbodiimides 4, which were obtained from aza-Wittig reaction of PEG-supported iminophosphoranes 3 with isocyanates.
基金supported by the Beijing Municipal Project for Developing Advanced Human Resources for Higher Education(Elastomers and Biomaterials).
文摘The living cationic polymerization of 4-[2-(tert-butyldimethylsiloxy)ethyl]styrene (TBDMES) was studied in methylcyclohexane (MeChx)/methylchloride (MeCl) (50/50 V/V) solvent mixture at -80 degrees C. The initiator 1,1-diphenylethylene (DPE) capped 2-chloro-2,4,4-trimethylpentane (TMPCl) was formed in situ in conjunction with titanium tetrachloride (TiCl(4)). The Lewis acidity of TiCl(4) was decreased by the addition of titanium(IV) isopropoxide (Ti(OiPr)(4)) to accomplish living polymerization of TBDMES. Hydrolysis of poly(TBDMES) in the presence of tetra-butylammonium fluoride yielded poly[4-(2-hydroxyethyl)styrene] (poly(HOES)). FT-IR, NMR and DSC demonstrated the hydrolysis was complete.
基金Supported by the National Natural Science Foundation of China(21476065)the China National Tobacco Corporation
文摘Micro-encapsulated phase-change materials(micro PCMs) with Na_2 HPO_4·12 H_2 O encapsulated in poly(lactic acid)(PLA) shell were prepared by a solvent evaporation–precipitation method that involves the use of a coaxial needle. The effects of PLA concentration, stirring speed, injection rate of core and shell solutions, and polyvinyl alcohol(PVA) concentration on phase change properties were investigated. The thermal properties of microP CMs were characterized by differential scanning calorimetry(DSC). The capsules prepared under the optimal conditions are about 2 mm in diameter and show a latent heat of up to 122.2 J·g^(-1).