期刊文献+
共找到3,073篇文章
< 1 2 154 >
每页显示 20 50 100
Novel sandwich structured glass fiber Cloth/Poly(ethylene oxide)-MXene composite electrolyte
1
作者 Yu-Qin Mao Guang-He Dong +3 位作者 Wei-Bin Zhu Yuan-Qing Li Pei Huang Shao-Yun Fu 《Nano Materials Science》 EI CAS CSCD 2024年第1期60-67,共8页
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa... Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries. 展开更多
关键词 Solid polymer electrolyte Ti_(3)C_(2)T_(x)MXene poly(ethylene oxide) Glass fiber cloth All-solid-state Li metal Battery
下载PDF
Ca_(2)MnO_(4)-layered perovskite modified by NaNO_(3)for chemical-looping oxidative dehydrogenation of ethane to ethylene
2
作者 Weixiao Ding Kun Zhao +2 位作者 Shican Jiang Zhen Huang Fang He 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第4期53-64,共12页
Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the... Chemical-looping oxidative dehydrogenation(CL-ODH)is a process designed for the conversion of alkanes into olefins through cyclic redox reactions,eliminating the need for gaseous O_(2).In this work,we investigated the use of Ca_(2)MnO_(4)-layered perovskites modified with NaNO_(3) dopants,serving as redox catalysts(also known as oxygen carriers),for the CL-ODH of ethane within a temperature range of 700-780℃.Our findings revealed that the incorporation of NaNO_(3) as a modifier significantly-nhanced the selectivity for-thylene generation from Ca_(2)MnO_(4).At 750℃and a gas hourly space velocity of 1300 h^(-1),we achieved an-thane conversion up to 68.17%,accompanied by a corresponding-thylene yield of 57.39%.X-ray photoelectron spectroscopy analysis unveiled that the doping NaNO_(3) onto Ca_(2)MnO_(4) not only played a role in reducing the oxidation state of Mn ions but also increased the lattice oxygen content of the redox catalyst.Furthermore,formation of NaNO_(3) shell on the surface of Ca_(2)MnO_(4) led to a reduction in the concentration of manganese sites and modulated the oxygen-releasing behavior in a step-wise manner.This modulation contributed significantly to the enhanced selectivity for ethylene of the NaNO_(3)-doped Ca_(2)MnO_(4) catalyst.These findings provide compelling evidence for the potential of Ca_(2)MnO_(4)-layered perovskites as promising redox catalysts in the context of CL-ODH reactions. 展开更多
关键词 Chemical-looping oxidative DEHYDROGENATION ETHANE ethylene NaNO_(3)-doped Ca_(2)MnO_(4)redox catalyst Layered perovskites
下载PDF
Unraveling the incompatibility mechanism of ethylene carbonate-based electrolytes in sodium metal anodes
3
作者 Daomin Qin Fangyuan Cheng +4 位作者 Meilian Cao Feiyang Yan Qian Wang Chun Fang Jiantao Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期560-567,共8页
Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.E... Ethylene carbonate(EC)is widely used in lithium-ion batteries due to its optimal overall performance with satisfactory conductivity,relatively stable solid electrolyte interphase(SEI),and wide electrochemical window.EC is also the most widely used electrolyte solvent in sodium ion batteries.However,compared to lithium metal,sodium metal(Na)shows higher activity and reacts violently with EC-based electrolyte(NaPF_(6)as solute),which leads to the failure of sodium metal batteries(SMBs).Herein,we reveal the electrochemical instability mechanism of EC on sodium metal battery,and find that the com-bination of EC and NaPF_(6) is electrically reduced in sodium metal anode during charging,resulting in the reduction of the first coulombic efficiency,and the continuous consumption of electrolyte leads to the cell failure.To address the above issues,an additive modified linear carbonate-based electrolyte is provided as a substitute for EC based electrolytes.Specifically,ethyl methyl carbonate(EMC)and dimethyl carbon-ate(DMC)as solvents and fluoroethylene carbonate(FEC)as SEI-forming additive have been identified as the optimal solvent for NaFP_(6)based electrolyte and used in Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))/Na batteries.The batter-ies exhibit excellent capacity retention rate of about 80%over 1000 cycles at a cut-off voltage of 4.3 V. 展开更多
关键词 Na metal batteries ethylene carbonate decomposition Na_(4)Fe_(3)(PO_(4))_(2)(P_(2)O_(7))cathode Interface engineering ethylene carbonate-free electrolyte
下载PDF
Laminar Composite Solid Electrolyte with Poly(Ethylene Oxide)-Threaded Metal-Organic Framework Nanosheets for High-Performance All-Solid-State Lithium Battery 被引量:1
4
作者 Na Peng Weijie Kou +3 位作者 Wenjia Wu Shiyuan Guo Yan Wang Jingtao Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期264-273,共10页
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el... Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes. 展开更多
关键词 all-solid-state lithium battery ion conduction laminar composite solid electrolyte poly(ethylene oxide)-threaded metal-organic framework nanosheet structural stability
下载PDF
Study of Thermal,Phase Morphological and Mechanical Properties of Poly(L-lactide)-b-Poly(ethylene glycol)-b-Poly(L-lactide)/Poly(ethylene glycol)Blend Bioplastics
5
作者 Yodthong Baimark Theeraphol Phromsopha 《Journal of Renewable Materials》 SCIE EI 2023年第4期1881-1894,共14页
A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applicatio... A poly(L-lactide)-b-poly(ethylene glycol)-b-poly(L-lactide)(PLLA-PEG-PLLA)block copolymer has great potential for use as a flexible bioplastic.Highly flexible bioplastics are required for flexible packaging applications.In this work,a PEG was incorporated into block copolymer as a plasticizer by solvent casting.PLLA-PEG-PLLA/PEG blends with different blend ratios were prepared,and the plasticizing effect and miscibility of PEG in block copolymer were intensively investigated compared to PLLA/PEG blends.The results indicated that the PEG was an effective plasticizer for the block copolymer.The blending of PEG decreased glass-transition temperature and accelerated the crystallization of both the PLLA and PLLA-PEG-PLLA matrices.The PEG was completely miscible when blended with block copolymer and it improved thermal stability of the block copolymer matrix but not of the PLLA matrix.Film extensibility of PLLA-PEG-PLLA/PEG blends steadily increased as the PEG ratio increased.These non-toxic and highly flexible PLLA-PEG-PLLA/PEG bioplastics are promising candidates for several applications such as biomedical devices,tissue scaffolds and packaging materials. 展开更多
关键词 poly(lactic acid) poly(ethylene glycol) polymer blends phase morphology thermal stability
下载PDF
Preparation and Thermo-Responsive Properties of Poly(Oligo(Ethylene Glycol)Methacrylate)Copolymers with Hydroxy-Terminated Side Chain
6
作者 陈杨轶 苏桐 +3 位作者 周仕航 谢晨迪 李京芝 邱夷平 《Journal of Donghua University(English Edition)》 CAS 2023年第6期610-621,共12页
Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylen... Thermo-responsive random copolymers,poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-(ethylene glycol)methyl ether methacrylate)(P(EO_(2)-co-EO_(4/5)))and poly(2-(2-methoxyethoxy)ethoxyethyl methacrylate-co-ethylene glycol methacrylate(P(EO2-co-EG4/5))are synthesized via atom transfer radical polymerization(ATRP).The successful synthesis and the narrow polydispersity index(PDI)of two copolymers are indicated by 1H nuclear magnetic resonance(1H-NMR)and gel permeation chromatography(GPC)analyses.The transition behaviors of polymers in the aqueous solution are demonstrated by changes in turbidity and particle sizes.The transition behavior of P(EO2-co-EG4/5)is found to be milder than that of P(EO2-co-EO4/5).Moreover,the presence of hydrogen bonds without thermo-responsive properties established by hydroxyl groups in the end-side chain of P(EO_(2)-co-EG_(4/5))hinders the dehydration at the transition temperature(TT).Attenuated total reflection Fourier transform infrared spectrometry(ATR-FTIR)analysis along with contact angle measurements reveals that both P(EO_(2)-co-EO_(4/5))and P(EO_(2)-co-EG_(4/5))films undergo phase transitions from hydrophilicity to hydrophobicity above TT.By examining the swelling and collapse behaviors of the polymer films during phase transitions,it can be concluded that the end hydroxyl groups may establish hydrogen bonds with neighboring ether groups within the films,which remain intact throughout the phase transition process due to their strong bonding interactions.This leads to an increase in steric hindrance within swollen films thereby impeding dehydration processes and inducing hysteresis during phase transitions. 展开更多
关键词 thermo-responsive property poly(oligo(ethylene glycol)methacrylate) polyethylene glycol methacrylate hydroxy-terminated side chain contact angle phase transition
下载PDF
Three New Zn(Ⅱ)/Cd(Ⅱ) Coordination Polymers Constructed with 2-Mercaptonicotinic Acid and 1,2-Di(4-pyridyl)ethylene: Syntheses and Structure Analysis 被引量:4
7
作者 杨鑫 傅瑞标 +3 位作者 胡胜民 黄艺辉 盛天录 吴新涛 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2013年第1期23-32,共10页
Three new Zn(Ⅱ)/Cd(Ⅱ) coordination polymers based on 2-mercaptonicotinic acid (H2mna) with 1,2-di(4-pyridyl)ethylene (dpe) introduced as a bridging ligand have been synthesized via hydrothermal method and ... Three new Zn(Ⅱ)/Cd(Ⅱ) coordination polymers based on 2-mercaptonicotinic acid (H2mna) with 1,2-di(4-pyridyl)ethylene (dpe) introduced as a bridging ligand have been synthesized via hydrothermal method and structurally characterized by single-crystal X-ray diffraction as well as elemental analysis and IR. As reported in this paper, [Zn2(dpe)0.5(mna)2] (1) can be classified as a two-dimensional layer structure in which the 1D chain composed of Zn(Ⅱ) and mna ligands is bridged by dpe ligands, while the complex named [Zn4(dpe)4(mna)4] (2) is a tetra-nuclear cluster compound. These two compounds are further extended to three-dimensional structures by hydrogen bonds along with C–H…π and π…π interactions. Compound 3 with general formular [Cd2(dpe)0.5(mna)2]·H2O belongs to a three-dimensional porous structure in which the 2D metal layers formed by the coordination of Cd(Ⅱ) and mna ligands are connected with the bridging of dpe ligands. 展开更多
关键词 2-mercaptonicotinic acid (H2mna) 1 2-di(4-pyridyl)ethylene (dpe) zinc cadmium
下载PDF
2-AMINOMETHYLPYRIDINE NICKEL(Ⅱ) COMPLEXES—SYNTHESIS,MOLECULAR STRUCTURE AND CATALYSIS OF ETHYLENE POLYMERIZATION 被引量:2
8
作者 伍青 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 2008年第5期567-573,共7页
A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precur... A series of new nickel(Ⅱ)complexes with 2-aminomethylpyridine ligands,(2-PyCH_2NHAr)_2NiBr_2(Ar=2,6- dimethylphenyl 2a;2,6-diisopropylphenyl 2b,2,6-difluorophenyl 2c),have been synthesized and used as catalyst precursors for ethylene polymerization in the presence of methylaluminoxane(MAO).The catalysts containing ortho-alkyl-substituents afford high molecular weight branched polyethylenes as well as a certain amount of oligomers.Enhancing the steric bulk of the alkyl substituent of the catalyst resulted in... 展开更多
关键词 2-Aminomethyipyridine Nickel(Ⅱ)complex CATALYST ethylene polymerization Oligomer.
下载PDF
Low-Temperature Plasma Induced Grafting of 2-Methacryloyloxyethyl Phosphorylcholine onto Poly(tetrafluoroethylene) Films 被引量:2
9
作者 赵蕴慧 王芬 何祥鹏 《Transactions of Tianjin University》 EI CAS 2009年第5期355-359,共5页
Modification of poly(tetrafluoroethylene)(PTFE) films with 2-methacryloyloxyethyl phosphorylcholine(MPC) was performed by low-temperature plasma treatment and grafting polymerization.Surface properties of PTFE were ch... Modification of poly(tetrafluoroethylene)(PTFE) films with 2-methacryloyloxyethyl phosphorylcholine(MPC) was performed by low-temperature plasma treatment and grafting polymerization.Surface properties of PTFE were characterized by attenuated total reflectance Fourier transform infrared(ATR-FTIR) spectra,X-ray photoelectron spectroscopy(XPS) ,and static contact angle.The results show that MPC has been grafted onto PTFE film surface successfully.Contact angle for the modified PTFE films in the water decreased from 108°to 58.25°,while surface energy increased from 17.52 mN/m to 45.47 mN/m.The effects of plasma treatment time,monomer concentration and grafting time on degree of grafting were determined.In the meanwhile,blood compatibility of the PTFE films was studied by checking thrombogenic time of blood plasma. 展开更多
关键词 low-temperature plasma poly(tetrafluoroethylene (PTFE) GRAFTING 2-methacryloyloxyethyl phosphorylcholine (MPC)
下载PDF
Polyvinyl acetate/poly(amide-12-b-ethylene oxide) blend membranes for carbon dioxide separation 被引量:1
10
作者 Shichao Feng Jizhong Ren +3 位作者 Hui Li Kaisheng Hua Xinxue Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第6期837-844,共8页
In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on ... In this paper,blend membranes from polyvinyl acetate(PVAc)and block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074)are prepared by solution casting and solvent evaporation method.Although they are homogeneous on a macro-scale,the observations from DSC and SEM indicate micro-phase separation for PVAc/Pebax1074 blend membranes.With the increase of Pebax1074 content,gas permeabilities of CO2,H2,N2and CH4all increase greatly.PVAc/Pebax1074 blend membranes with high PVAc content are appropriate for CO2/CH4separation.The temperature dependence of gas permeability is divided into rubbery region and glassy region.The activation energies of permeation in rubbery region are smaller than those in glassy region,and they all decrease with increasing Pebax1074 content.For N2,H2and CH4,their gas permeation properties are mainly influenced by the dual-mode sorption and hydrostatic pressure effect.But for CO2,its permeability increases with the increase of pressure due to CO2-induced plasticization effect,which is more obvious for PVAc/Pebax1074 blend membranes with high PVAc content. 展开更多
关键词 polyvinyl acetate poly(amide-12-b-ethylene oxide) blend membrane carbon dioxide separation
下载PDF
CONDUCTING BLENDS OF POLY (2-VINYL PYRIDINE) AND POLYETHYLENE OXIDE WITH HIGH MOLECULAR WEIGHT
11
作者 崔敏慧 过俊石 +1 位作者 谢洪泉 陈栋华 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1997年第1期24-33,共10页
Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were ... Ionic, electronic and mixed (ionic-electronic) conductivities of blends of poly(2-vinyl pyridine) (P2VP) and poly(ethylene oxide) (PEO) with high molecular weight after doped with LiClO4, TCNQ or LiClO4 and TCNQ were investigated. Effects of LiClO4 and TCNQ concentrations on the conductivity of PEO/P2VP/LiClO4 or TCNQ blend were studied. The ionic conductivity of PEO/P2VP/LiClO4 blend increases with increasing PEO content. At a Li/ethylene bride molar ratio of 0.10 and a TCNQ/2-vinyl pyridine molar ratio of 0.5, the mixed conductivity of PEO/P2VP/LiClO4/TCNQ is higher than the total of ionic conductivity of PEO/P2VP/LiClO4 and electronic conductivity of PEO/P2VP/TCNQ when the weight ratio of PEO and P2VP is 6/4 or 5/5. Scanning electron microscopy (SEM) on the broken cross-section of the PEO/P2VP/LiClO4 blend and differential scanning calorimetry (DSC) results show that LiClO4 could act as a compatibilizer in the blend. 展开更多
关键词 poly(ethylene oxide) poly(2-vinyl pyridine) mixed (ionic-electronic) conductivity lithium perchlorate compatibilizing effect
下载PDF
Poly(amide-6-b-ethylene oxide)/[Bmim][Tf2N] blend membranes for carbon dioxide separation 被引量:3
12
作者 Yongtao Qiu Jizhong Ren +2 位作者 Dan Zhao Hui Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2016年第1期122-130,共9页
Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting a... Poly(amide-6-b-ethylene oxide)(Pebax1657)/1-butyl-3-methylimidazo-lium bis[trifluoromethyl)sulfonyl]-imide([Bmim][Tf2N]) blend membranes with different [Bmim][Tf2N] contents were prepared via solution casting and solvent evaporation method. The permeation properties of the blend membranes for CO2, N2,CH4 and H2 were studied, and the physical properties were characterized by differential scanning calorimeter(DSC) and X-ray diffraction(XRD). Results showed that [Bmim][Tf2N] was dispersed as amorphous phase in the blend membranes, which caused the decrease of Tg(PE) and crystallinity(PA). With the addition of [Bmim][Tf2N], the CO2 permeability increased and reached up to approximately 286 Barrer at 40 wt%[Bmim][Tf2N], which was nearly double that of pristine Pebax1657 membrane. The increase of CO2 permeability may be attributed to high intrinsic permeability of [Bmim][Tf2N], the increase of fractional free of volume(FFV) and plasticization effect. However, the CO2 permeability reduced firstly when the [Bmim][Tf2N]content was below 10 wt%, which may be due to that the small ions of [Bmim][Tf2N] in the gap of polymer chain inhibited the flexibility of polymer chain; the interaction between Pebax1657 and [Bmim][Tf2N]decreased the content of EO units available for CO2 transport and led to a more compact structure. For Pebax1657/[Bmim][Tf2N] blend membranes, the permeabilities of N2, H2 and CH4decreased with the increase of feed pressure due to the hydrostatic pressure effect, while CO2 permeability increased with the increase of feed pressure for that the CO2-induced plasticization effect was stronger than hydrostatic pressure effect. 展开更多
关键词 poly(amide-6-b-ethylene oxide) Ionic liquid Carbon dioxide separation Blend membrane
下载PDF
H_2/CO_2 Gas Transport Performance in Poly(Ethylene Oxide) Reverse-selective Membrane with Star-like Structures
13
作者 ZHAO Hongyong DING Xiaoli 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2019年第1期195-200,共6页
A series of poly(ethylene oxide)(PEO) membranes with star-like structures for CO_2/H_2 separation were prepared by the photo-polymerization method. The structure of PEO membrane was characterized by Fourier transform ... A series of poly(ethylene oxide)(PEO) membranes with star-like structures for CO_2/H_2 separation were prepared by the photo-polymerization method. The structure of PEO membrane was characterized by Fourier transform infrared spectroscopy(FTIR). The thermal property and inter-segmental distance of polymer chain were investigated by differential scanning calorimetry and wide-angle X-ray diffraction, respectively. The density was determined by hydrostatic weighing method. The gas permeability, solubility and diffusivity of CO_2 and H_2 were investigated in the star-like PEO membranes. The relationship between gas permeation performances and physical properties was also discussed. The membrane exhibits outstanding CO_2 permeability(about 9.7×10^(-11) cm^3(STP) cm/cm^2/s/Pa) and CO_2/H_2 selectivity(about 11) compared with other membranes. 展开更多
关键词 hydrogen PURIFICATION reverse-selective MEMBRANE poly(ethylene oxide) star-like structure
下载PDF
In-situ Observation of the Growth of Fibrous and Dendritic Crystals in Quasi-2-dimensional Poly(ethylene oxide) Ultrathin Films
14
作者 周圆 韩霞 +1 位作者 刘洪来 胡英 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2014年第3期339-345,共7页
Crystal growth processes of poly(ethylene oxide) were followed from the original nucleation sites by using atomic force microscopy. Two distinct quasi-2-dimensional crystals about 4 nm thick were obtained from as-sp... Crystal growth processes of poly(ethylene oxide) were followed from the original nucleation sites by using atomic force microscopy. Two distinct quasi-2-dimensional crystals about 4 nm thick were obtained from as-spun polymer ultrathin films: fibrous crystals, generated by the sheafing field via spin-coating, coexist with con- ventional dendrites. The growth of the two structures is dominated by diffusion limited aggregation, though the growth rate of the fibrous crystals is around one order of magnitude faster than that of the dendrites. The fibrous crystals are more stable than the dendritic ones. 展开更多
关键词 polymer crystallization crystal pattern formation atomic force microscopy poly(ethylene oxide)
下载PDF
The interphasial degradation of 4.2 V-class poly(ethylene oxide)-based solid batteries beyond electrochemical voltage limit
15
作者 Renzhi Huang Yang Ding +5 位作者 Fenglin Zhang Wei Jiang Canfu Zhang Pengfei Yan Min Ling Huilin Pan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第12期504-511,I0013,共9页
Solid-state polymer electrolytes(SPEs)have attracted increasing attention due to good interfacial contact,light weight,and easy manufacturing.However,the practical application of SPEs such as the most widely studied p... Solid-state polymer electrolytes(SPEs)have attracted increasing attention due to good interfacial contact,light weight,and easy manufacturing.However,the practical application of SPEs such as the most widely studied poly(ethylene oxide)(PEO)in high-energy solid polymer batteries is still challenging,and the reasons are yet elusive.Here,it is found that the mismatch between PEO and 4.2 V-class cathodes is beyond the limited electrochemical window of PEO in the solid Li Ni_(1/3)Mn_(1/3)Co_(1/3)O_(2)(NMC)-PEO batteries.The initial oxidation of PEO initiates remarkable surface reconstruction of NMC grains in solid batteries that are different from the situation in liquid electrolytes.Well-aligned nanovoids are observed in NMC grains during the diffusion of surface reconstruction layers towards the bulk in solid batteries.The substantial interphasial degradation,therefore,blocks smooth Li+transport across the NMC-PEO interface and causes performance degradation.A thin yet effective Li F-containing protection layer on NMC can effectively stabilize the NMC-PEO interface with a greatly improved lifespan of NMC|PEO|Li batteries.This work deepens the understanding of degradations in high-voltage solid-state polymer batteries. 展开更多
关键词 poly(ethylene oxide) Surface reconstruction Interphasial degradation High-energy solid polymer batteries
下载PDF
Preparation And Characterization of a New Blend of Poly(2-hydroxyethyl methacrylate) And Poly(ethylene glycol)
16
作者 Wei Bin CHEN Han Qiao FENG +1 位作者 Da Yong HE Chao Hui YE(Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071.)(Polymer Physics Laboratory, Changchun Institute 《Chinese Chemical Letters》 SCIE CAS CSCD 1997年第11期953-956,共4页
A new blend of poly(2-hydroxyethyl methacrylate) (PHEMA) with poly (ethylene glycol) (PEG) was prepared. The results from solid-state NMR indicate that the PHEMA/PEG(88:12, w/w) blend is miscible on a molecular level.
关键词 PHEMA Preparation And Characterization of a New Blend of poly ethylene glycol hydroxyethyl methacrylate BLEND
下载PDF
COPOLYMERIZATION OF ETHYLENE WITH 1-OCTENE USING Et(Ind)_2ZrCl_2/MAO CATALYST
17
作者 姚晖 肖士镜 陆宏兰 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1998年第1期32-37,共6页
Copolymerization of ethylene/1-octene was carried out in toluene withvarious concentrations of comonomer in the feed using Et(Ind)_2ZrCl_2/MAO (methyl alu-minoxane) as catalyst. It was found that with the increase of ... Copolymerization of ethylene/1-octene was carried out in toluene withvarious concentrations of comonomer in the feed using Et(Ind)_2ZrCl_2/MAO (methyl alu-minoxane) as catalyst. It was found that with the increase of 1-octene concentration in thefeed the content of 1-octene in the copolymer increases, while the density, melting point,crystallinity and intrinsic viscosity of copolymer decrease. A copolymer with very lowdensity, containing 11.5 mol% of 1-octene (VLLDPE) can be produced with this catalystsystem. The effect of temperature and zirconium aluminum mole ratio of the catalyst onthe copolymerization was also investigated. The results of ^(13)C NMR determination of thecopolymer showed that the 1-octene units in the copolymer are principally isolated. 展开更多
关键词 COpolyMERIZATION ethylene 1-OCTENE METHYLALUMINOXANE Et(Ind)_2ZrCl_2
下载PDF
Preparation of Spherical MgCl_2/SiO_2/THF-Supported Late-Transition Metal Catalysts for Ethylene Polymerization
18
作者 Bai Wei Gao Xianglu +2 位作者 Wu Haotian Cao Chengang Jiang Tao 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2014年第3期77-83,共7页
A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6... A facile and user friendly technique to immobilize the late-transition metal complexes on spherical MgCl2/SiO2/THF support has been developed. The spherical MgCl2/SiO2/THF-supported late-transition metal catalysts 2,6-bis-[1-(2,6-dimethylphenylimino)ethyl]pyridine iron(II) dichloride(SC-A) and 1,4-bis(2,6-dimethylphenyl)- acenaphthene diimine nickel(II) dibromide(SC-B) for ethylene polymerization has been prepared by spray-drying technique using tetrahydrofuran suspension containing MgCl2, SiO2 and late-transition metal complexes. The catalysts were characterized by BET, XRD, SEM and the polymers were analyzed using GPC, DSC and 13C-NMR. The test results show that spray-drying is a very effective method for immobilizing late-transition metal catalysts for ethylene polymerization. Among six kinds of cocatalysts for olefin polymerization, TMA and TEA were confirmed to be more effective than other compounds for the ethylene polymerization system using the catalyst SC-A. For the case of the catalyst SC-B, DEAC showed the best performance as cocatalysts in ethylene polymerization. The replication of the catalyst morphology was found in the resultant polyethylene. 展开更多
关键词 MgCl2/SiO2/THF support late-transition metal catalyst polymerization of ethylene SPRAY-DRYING
下载PDF
MgCl_2·6H_2O-BASED ZIRCONOCENE CATALYST FOR ETHYLENE POLYERIZATION
19
作者 Shi-jing Xiao Hui Yao Ke-quan Peng Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China 《Chinese Journal of Polymer Science》 SCIE CAS CSCD 1999年第2期185-188,共4页
Several supported zirconocene catalysts were prepared by using MgCl_2·6H_2O as a precursor forproducing an active support. Such catalysts combined with methylaluminoxane (MAO) obtained by reactingMgCl_2·6H_2... Several supported zirconocene catalysts were prepared by using MgCl_2·6H_2O as a precursor forproducing an active support. Such catalysts combined with methylaluminoxane (MAO) obtained by reactingMgCl_2·6H_2O with AlMe_3 show good activity for ethylene polymerization similar to that of anhydrousMgCl_2 supported zirconocene catalyst. 展开更多
关键词 MgCl_2.6H_2O Supported zirconocene catalyst ethylene polymerization
下载PDF
Effect of poly(ethylene glycol) molecular weight on CO_2/N_2 separation performance of poly(amide-12-b-ethylene oxide)/poly(ethylene glycol) blend membranes
20
作者 Shichao Feng Jizhong Ren +4 位作者 Dan Zhao Hui Li Kaisheng Hua Xinxue Li Maicun Deng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第1期39-45,共7页
Membranes from block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074) and its blends with different molecular weight poly(ethylene glycol)(PEG)(200, 400, 600, 1500, 4600 and 8000) were prepared. The thermal proper... Membranes from block copolymer poly(amide-12-b-ethylene oxide)(Pebax1074) and its blends with different molecular weight poly(ethylene glycol)(PEG)(200, 400, 600, 1500, 4600 and 8000) were prepared. The thermal properties and structures of Pebax1074/PEG blend membranes were characterized by DSC and SEM, and the gas permeation properties of CO_2 and N_2 were also investigated at different temperatures. For Pebax1074/PEG blend membranes with low molecular weight PEG(MW≤ 600), higher gas permeabilities than Pebax1074 were achieved. The permeability increased with the increase of PEG molecular weight. The addition of low molecular weight PEG resulted in decrease in activation energy of permeation. For Pebax1074/PEG blend membranes with high molecular weight PEG(MW≥ 1500), due to the melt of PEO phase crystals, the gas permeation properties of blend membranes were temperaturedependent, which could be divided into crystalline region, transition region and amorphous region according to two different transition temperatures. PEG molecular weight and operation temperature determined different gas permeation properties of Pebax1074/PEG blend membranes in three regions. The activation energies of permeation in crystalline region were larger than those in amorphous region. 展开更多
关键词 poly(amide-12-b-ethylene oxide) polyethylene glycol Blend membrane Carbon dioxide separation
下载PDF
上一页 1 2 154 下一页 到第
使用帮助 返回顶部