The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA v...The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.展开更多
Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performa...Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.展开更多
A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) was prepared by cyclic voltammetry (CV) and characterized by FTIR and SEM. It showed good electroactivity for methanol oxidation in H2SO4 solution.
Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-bu...Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition, catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin 〉 Y(CCl3COO)3-Zn(n- Pr)2-glycerin〉Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.展开更多
Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H...Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.展开更多
The preparation and electrocatalytic activity of polyaniline-poly ( propylene oxide ) ( PAN-PPO ) modified by Pt particles ( Pt/ PAN-PPO ) were investigated. Pt/ PAN-PPO was characterized by scanning electron mi...The preparation and electrocatalytic activity of polyaniline-poly ( propylene oxide ) ( PAN-PPO ) modified by Pt particles ( Pt/ PAN-PPO ) were investigated. Pt/ PAN-PPO was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy ( EDS ). Pt particles on PAN-PPO were in the nanometer range, and dispersed in a three-dimensional distribution on the surface of PAN-PPO film. Compared with polyaniline and glassy carbon modified with Pt particles under the same conditions, Pt/PAN-PPO exhibited a high electrocatalytic activity for lysine oxidation.展开更多
The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization condi...The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. The copolymerization procedure was tracked by ^1H NMR analyses.展开更多
The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticpara...The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticparameters are obtained by numerical optimization of the kinetic model.展开更多
In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A)...In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A), surface tension at CMC (γCMC). A linear decrease of ln[CMC] vs number of oxypropylene units in copolymer molecule was observed. The change in the work of cohesion per oxypropylene group when passing from molecular into micellar state, calculated from the Shinoda equation, was 0.43kT for the studied compounds.展开更多
A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors ...A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors and on the partition of cephalexin and7-aminodesacetoxicephalosporanic acid (7-ADCA) in ATPS wereinvestigated. Both the molar mass and molar ratio of EO to PO of EOPOcould greatly influence partition behaviors of cephalexin and 7-ADCAas well as the binodal curve of ATPS.展开更多
In this paper,a amphiphilic brush copolymer poly(propylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate)(PPO-gPDMAEMA)was successfully prepared via the combine of anionic ring opening polymerization and atom ...In this paper,a amphiphilic brush copolymer poly(propylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate)(PPO-gPDMAEMA)was successfully prepared via the combine of anionic ring opening polymerization and atom transfer radical polymerization(ATRP).The target products were confirmed by GPC and1H NMR.This well-defined copolymer can supply a promising material as drug and gene carriers and protective materials.展开更多
Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination...Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.展开更多
Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]...Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.展开更多
Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid el...Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.展开更多
Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and en...Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries.展开更多
The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the ...The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results.展开更多
A series of acetate ionic liquids were synthesized using a typical two‐step method.The ionic liquids were used as environmentally benign catalysts in the production of propylene glycol ethers from propylene oxide and...A series of acetate ionic liquids were synthesized using a typical two‐step method.The ionic liquids were used as environmentally benign catalysts in the production of propylene glycol ethers from propylene oxide and alcohols under mild conditions.The basic strengths of the ionic liquids were evaluated by determination of their Hammett functions,obtained using ultraviolet‐visible spectroscopy,and the relationship between their catalytic activities and basicities was established.The catalytic efficiencies of the ionic liquids were higher than that of the traditional basic catalyst NaOH.This can be attributed to the involvement of a novel reaction mechanism when these ionic liquids are used.A possible electrophilic‐nucleophilic dual activation mechanism was proposed and confirmed using electrospray ionization quadrupole time‐of‐flight mass spectrometry.In addition,the effects of significant reaction parameters such as concentration of catalyst,molar ratio of alcohol to propylene oxide,reaction temperature,and steric hindrance of the alcohol were investigated in detail.展开更多
Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylstmmonium bromide (n-Bu4NBr) as catalyst. The high ra...Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylstmmonium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.展开更多
Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for the...Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene.展开更多
基金Prince of Songkla University(PSU),Hat Yai,Songkhla,Thailand(Grant Number AGR581246S).
文摘The synergistic effect of organoclay(OC)and zinc oxide(ZnO)nanoparticles on the crucial properties of poly(lactic acid)(PLA)nanocompositefilms was systematically investigated herein.After their incorporation into PLA via the solvent casting technique,the water vapor barrier property of the PLA/OC/ZnOfilm improved by a maximum of 86%compared to the neat PLAfilm without the deterioration of Young’s modulus or the tensile strength.Moreover,thefilm’s self-antibacterial activity against foodborne pathogens,including gram-negative(Escherichia coli,E.coli)and gram-positive(Staphylococcus aureus,S.aureus)bacteria,was enhanced by a max-imum of approximately 98–99%compared to the neat PLAfilm.Furthermore,SEM images revealed the homo-geneous dispersion of both nano-fillers in the PLA matrix.However,the thermal stability of thefilm decreased slightly after the addition of the OC and ZnO.Thefilm exhibited notable light barrier properties in the UV-Vis range.Moreover,the incorporation of a suitable biodegradable plasticizer significantly decreased the Tg and notably enhanced theflexibility of the nanocompositefilm by increasing the elongation at break approxi-mately 1.5-fold compared to that of the neat PLAfilm.This contributes to its feasibility as an active food packa-ging material.
基金support of the Fundamental Research Funds for the Central Universities(No.2022CDJQY-004)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002).
文摘Recently,poly(ethylene oxide)(PEO)-based solid polymer electrolytes have been attracting great attention,and efforts are currently underway to develop PEO-based composite electrolytes for next generation high performance all-solid-state lithium metal batteries.In this article,a novel sandwich structured solid-state PEO composite electrolyte is developed for high performance all-solid-state lithium metal batteries.The PEO-based composite electrolyte is fabricated by hot-pressing PEO,LiTFSI and Ti_(3)C_(2)T_(x) MXene nanosheets into glass fiber cloth(GFC).The as-prepared GFC@PEO-MXene electrolyte shows high mechanical properties,good electrochemical stability,and high lithium-ion migration number,which indicates an obvious synergistic effect from the microscale GFC and the nanoscale MXene.Such as,the GFC@PEO-1 wt%MXene electrolyte shows a high tensile strength of 43.43 MPa and an impressive Young's modulus of 496 MPa,which are increased by 1205%and 6048%over those of PEO.Meanwhile,the ionic conductivity of GFC@PEO-1 wt%MXene at 60℃ reaches 5.01×10^(-2) S m^(-1),which is increased by around 200%compared with that of GFC@PEO electrolyte.In addition,the Li/Li symmetric battery based on GFC@PEO-1 wt%MXene electrolyte shows an excellent cycling stability over 800 h(0.3 mA cm^(-2),0.3 mAh cm^(-2)),which is obviously longer than that based on PEO and GFC@PEO electrolytes due to the better compatibility of GFC@PEO-1 wt%MXene electrolyte with Li anode.Furthermore,the solid-state Li/LiFePO_(4) battery with GFC@PEO-1 wt%MXene as electrolyte demonstrates a high capacity of 110.2–166.1 mAh g^(-1) in a wide temperature range of 25–60C,and an excellent capacity retention rate.The developed sandwich structured GFC@PEO-1 wt%MXene electrolyte with the excellent overall performance is promising for next generation high performance all-solid-state lithium metal batteries.
文摘A novel copolymer of polyaniline-poly(propylene oxide) (PAN-PPO) was prepared by cyclic voltammetry (CV) and characterized by FTIR and SEM. It showed good electroactivity for methanol oxidation in H2SO4 solution.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.20025414 and 50003009).
文摘Rare-earth ternary catalysts Y(CCl3COO)3-ZnR2-glycerin were prepared for the copolymerization of carbon dioxide and propylene oxide (PO), where dialkylzincs (ZnR2) were diethylzinc, di(n-propyl)zinc, di(n-butyl)zinc, di(i-propyl)zinc, di(i-butyl)zinc, di(s-butyl)zinc,respectively. The Y(CCl3COO)3-ZnR2-glycerin catalysts displayed the highest catalytic activity at the molar ratio of Y(CCl3COO)3:ZnR2:glycerin = 1:20:10. In the same copolymerization condition, catalysts containing dialkylzincs with branched alkyl group showed lower catalytic activity than that with primary alkyl group. For those catalysts including dialkylzincs with primary alkyl group, their catalytic activity decreases with increasing number of carbon atom in the alkyl group with the following sequence: Y(CCl3COO)3-ZnEt2-glycerin 〉 Y(CCl3COO)3-Zn(n- Pr)2-glycerin〉Y(CCl3COO)3-Zn(n-Bu)2-glycerin. However, the alkyl group in the dialkylzinc does not influence the insertion of PO into the propagation chain end.
文摘Copolymerization of propylene oxide (PO) and ethylene oxide (EO) using double metal cyanide (DMC) complex as the catalyst was carried out. The structure of random copolymers was confirmed by C-13-NMR and IR spectra. H-1-NMR analysis shows that the EO content in the copolymer is the same as that in the initial monomer feed. Moderate molecular weight copolymers with various EO content were obtained and their values of molecular weight distribution (MWD) fell in the range of 1.21-1.55. It was found that the molecular weight of copolymers is controlled by the mass ratio of EO+PO to initiator moles used, The reaction rate as well as polymer yield decrease with increasing EO content in the feed composition.
基金Funded by the National Natural Science Foundation of China(No.20376074) and the Special Funds for the Major State BasicResearch Projects (2003CCA01300)
文摘The preparation and electrocatalytic activity of polyaniline-poly ( propylene oxide ) ( PAN-PPO ) modified by Pt particles ( Pt/ PAN-PPO ) were investigated. Pt/ PAN-PPO was characterized by scanning electron microscopy (SEM) and energy dispersive spectroscopy ( EDS ). Pt particles on PAN-PPO were in the nanometer range, and dispersed in a three-dimensional distribution on the surface of PAN-PPO film. Compared with polyaniline and glassy carbon modified with Pt particles under the same conditions, Pt/PAN-PPO exhibited a high electrocatalytic activity for lysine oxidation.
基金Supported by the National Natural Science Foundation of China(Nos.20704036, Key Program 20434020)the State Basic Research Projects of China(No.2005CB623802)
文摘The ring-opening copolymerization of adipic anhydride with propylene oxide was carried out with yttrium triflates as a catalyst. Poly(propylene adipate) could be synthesized by controlling the copolymerization conditions. The copolymerization procedure was tracked by ^1H NMR analyses.
文摘The copolymerization kinetics of ethylene oxide and propylene oxide in an atomizing-circulation reactorunder semi-continuous operation is studied which is of great importance for molecular designation. The kineticparameters are obtained by numerical optimization of the kinetic model.
基金Project (No. 2004C31058) supported by the Zhejiang ProvincialS&T Programme of China
文摘In this work, the surface activity of block copolymer nonionic surfactants (RPE) has been determined, i.e., critical micelle concentration (CMC), surface excess concentration (Γ), surface area demand per molecule (A), surface tension at CMC (γCMC). A linear decrease of ln[CMC] vs number of oxypropylene units in copolymer molecule was observed. The change in the work of cohesion per oxypropylene group when passing from molecular into micellar state, calculated from the Shinoda equation, was 0.43kT for the studied compounds.
基金Supported by the National Natural Science Foundation of China (No. 29873014) and the Key Disciplinary Foundation of Shanghai.
文摘A series of ethylene oxide (EO)-propylene oxide (PO) randomco-polymers (EOPO) were used to form aqueous two-phase systems (ATPS)with ammonium sulfate. Effects of EOPO's properties on the phaseseparation behaviors and on the partition of cephalexin and7-aminodesacetoxicephalosporanic acid (7-ADCA) in ATPS wereinvestigated. Both the molar mass and molar ratio of EO to PO of EOPOcould greatly influence partition behaviors of cephalexin and 7-ADCAas well as the binodal curve of ATPS.
文摘In this paper,a amphiphilic brush copolymer poly(propylene oxide)-graft-poly(N,N-dimethylaminoethyl methacrylate)(PPO-gPDMAEMA)was successfully prepared via the combine of anionic ring opening polymerization and atom transfer radical polymerization(ATRP).The target products were confirmed by GPC and1H NMR.This well-defined copolymer can supply a promising material as drug and gene carriers and protective materials.
基金the financial support of the National Key R&D Program of China(No.2019YFC1806000)the Huazhong University of Science and Technology(No.3004013118)+2 种基金support from the National Natural Science Foundation of China(No.51903099)Huazhong University of Science and Technology(No.3004013134)the 100 Talents Program of the Hubei Provincial Government.Z.D.thanks the Postdoctoral Science Foundation of China(No.0106013063).
文摘Graphene oxide(GO)is regarded as a promising candidate to construct solar absorbers for addressing freshwater crisis,but the easy delamination of GO in water poses a critical challenge for practical solar desalination.Herein,we improve the stability of GO membranes by a self-crosslinking poly(ionic liquid)(PIL)in a mild condition,which crosslinks neighbouring GO nanosheets without blemishing the hydrophilic structure of GO.By further adding carbon nanotubes(CNTs),the sandwiched GO/CNT@PIL(GCP)membrane displays a good stability in pH=1 or 13 solution even for 270 days.The molecular dynamics simulation results indicate that the generation of water nanofluidics in nanochannels of GO nanosheets remarkably reduces the water evaporation enthalpy in GCP membrane,compared to bulk water.Consequently,the GCP membrane exhibits a high evaporation rate(1.87 kg m^(-2)h^(-1))and displays stable evaporation rates for 14 h under 1 kW m^(-2)irradiation.The GCP membrane additionally works very well when using different water sources(e.g.,dye-polluted water)or even strong acidic solution(pH=1)or basic solution(pH=13).More importantly,through bundling pluralities of GCP membrane,an efficient solar desalination device is developed to produce drinkable water from seawater.The average daily drinkable water amount in sunny day is 10.1 kg m^(-2),which meets with the daily drinkable water needs of five adults.The high evaporation rate,long-time durability and good scalability make the GCP membrane an outstanding candidate for practical solar seawater desalination.
基金support of this work by National Natural Science Foundation of China(22075031,51673030,51603017 and 51803011)Jilin Provincial Science&Technology Department(20220201105GX)Chang Bai Mountain Scholars Program of Jilin Province.
文摘Achieving high fouling resistance and permeability using membrane separation technology in water treatment processes remains a challenge.In this work,a novel mixed-matrix membrane(MMM)(poly(arylene ether ketone)[PAEK]-containing carboxyl groups[PAEK-COOH]/UiO-66-NH_(2)@graphene oxide[GO])with superb fouling resistance and high permeability was prepared by the nonsolvent-induced phase separation method,by in-situ growth of UiO-66-NH_(2) on the GO layer,and by preparing hydrophilic PAEK-COOH.On the basis of the structure and performance analysis of the MMM,the maximum water flux reached 591.25 L·m^(-2)·h^(-1) for PAEK-COOH/UiO-66-NH_(2)@GO,whereas the retention rate for bovine serum albumin increased from 85.40%to 94.87%.As the loading gradually increased,the hydrophilicity of the MMMs increased,significantly enhancing their fouling resistance.The strongest anti-fouling ability observed was 94.74%,which was 2.02 times greater than that of the pure membrane.At the same time,the MMMs contained internal amide and hydrogen bonds during the preparation process,forming a cross-linked structure,which further enhanced the mechanical strength and chemical stability.In summary,the MMMs with high retention rate,strong permeability,and anti-fouling ability were successfully prepared.
基金The authors would like to acknowledge the financial support from National Nat-ural Science Foundation of China (U2004199)Excellent Youth Foundation of Henan Province (202300410373)+2 种基金China Postdoctoral Science Foundation (2021T140615 and 2020M672281)Natural Science Foundation of Henan Province (212300410285)Young Talent Support Project of Henan Province(2021HYTP028).
文摘Developing laminar composite solid electrolyte with ultrathin thickness and continuous conduction channels in vertical direction holds great promise for all-solid-state lithium batteries.Herein,a thin,laminar solid electrolyte is synthesized by filtrating–NH 2 functionalized metal-organic framework nanosheets and then being threaded with poly(ethylene oxide)chains induced by the hydrogen-bonding interaction from–NH_(2) groups.It is demonstrated that the threaded poly(ethylene oxide)chains lock the adjacent metal-organic framework nanosheets,giving highly enhanced structural stability(Young’s modulus,1.3 GPa)to 7.5-μm-thick laminar composite solid electrolyte.Importantly,these poly(ethylene oxide)chains with stretching structure serve as continuous conduction pathways along the chains in pores.It makes the non-conduction laminar metal-organic framework electrolyte highly conductive:3.97×10^(−5) S cm^(−1) at 25℃,which is even over 25 times higher than that of pure poly(ethylene oxide)electrolyte.The assembled lithium cell,thus,acquires superior cycling stability,initial discharge capacity(148 mAh g^(−1) at 0.5 C and 60℃),and retention(94% after 150 cycles).Besides,the pore size of nanosheet is tailored(24.5–40.9˚A)to evaluate the mechanisms of chain conformation and ion transport in confined space.It shows that the confined pore only with proper size could facilitate the stretching of poly(ethylene oxide)chains,and meanwhile inhibit their disorder degree.Specifically,the pore size of 33.8˚A shows optimized confinement effect with trans-poly(ethylene oxide)and cis-poly(ethylene oxide)conformation,which offers great significance in ion conduction.Our design of poly(ethylene oxide)-threaded architecture provides a platform and paves a way to the rational design of next-generation high-performance porous electrolytes.
基金the National Natural Science Foundation of China(Grant No.22179044).
文摘Compared with aqueous single-ion batteries,rechargeable aqueous hybrid ion batteries,especially Li^(+)/Zn^(2+)hybrid ion batteries,are receiving extensive interest owing to their low cost,high operating voltage,and energy density.However,their working voltage and lifespan are limited by the decomposition of water and the growth of Zn dendrites.Herein,detrimental side reactions induced by the water reduction and the Zn dendrite growth are successfully suppressed by a poly(propylene glycol)(PPG)-based hybrid ion electrolyte[(1 m Zn(TFSI)2+10 m LiTFSI)in PPG/H2O].The addition of PPG in the electrolyte can not only enhance the bonding strength of hydrogen-bond in water but also tailor the solvation sheath of Zn2+as revealed by synchrotron X-rays.The participated solvation of PPG with Zn^(2+)can weaken Zn-H_(2)O interactions and redistribute Zn^(2+)flux on the surface of the Zn anode,thus inducing favorably even deposition of Zn.In addition,the decomposition of TFSI-contributes a ZnF_(2)-enriched solid electrolyte interface at the Zn anode to further prevent water decomposition and restrain Zn dendrites.The PPG-based electrolyte enables 2.1 V LiMnO_(2)//Zn batteries to deliver high specific capacities(121.7 mAh g^(-1)for a coin cell and 90 mAh g^(-1)for a pouch cell),and maintain 80%of the capacity over 700 cycles at 0.5 C,suggesting a promising pathway for highly reversible aqueous hybrid ion batteries.
基金Supported by the National Natural Science Foundation of China(No.20973065)the Fund of Basic Research in Natural Science Issued by Shanghai Municipal Committee of Science+4 种基金 China(No.08dj1400100)the Shanghai Leading Project China (No.B409)the Foundation of Outstanding Young Talent in University of Anhui Province China No.2010SQRL042)
文摘The electrocatalytic synthesis of propylene carbonate(PC) from CO2 and propylene oxide(PO) was studied under mild conditions(PCO2=1.01×105 Pa, t=25 ℃). Influences of solvents, supporting electrolytes, the passed charge, the nature of electrodes and the current density(j) on the yield of PC were investigated to optimize the electrolytic conditions, with the maximal yield to be 46.2%, the selectivity of propylene carbonate is 100%. The reduction of propylene oxide in the absence and presence of CO2 was examined by cyclic voltammetry. The mechanism of the reaction initiated by the synergistic effect of halides ions of supporting electrolytes with nucleophilicity and the metal ions from scarification anode with Lewis acid acidity was proposed on the basis of our results.
基金supported by the One Hundred Talent Program of CASthe National Natural Science Foundation of China Petroleum & Chemical Corporation Joint Fund(U1662129)+1 种基金the National Natural Science Foundation of China(91434203)the Key Research Program of Frontier Sciences,Chinese Academy of Sciences(QYZDY-SSW-JSC011)~~
文摘A series of acetate ionic liquids were synthesized using a typical two‐step method.The ionic liquids were used as environmentally benign catalysts in the production of propylene glycol ethers from propylene oxide and alcohols under mild conditions.The basic strengths of the ionic liquids were evaluated by determination of their Hammett functions,obtained using ultraviolet‐visible spectroscopy,and the relationship between their catalytic activities and basicities was established.The catalytic efficiencies of the ionic liquids were higher than that of the traditional basic catalyst NaOH.This can be attributed to the involvement of a novel reaction mechanism when these ionic liquids are used.A possible electrophilic‐nucleophilic dual activation mechanism was proposed and confirmed using electrospray ionization quadrupole time‐of‐flight mass spectrometry.In addition,the effects of significant reaction parameters such as concentration of catalyst,molar ratio of alcohol to propylene oxide,reaction temperature,and steric hindrance of the alcohol were investigated in detail.
文摘Propylene carbonate was synthesized from supercritical carbon dioxide (SC-CO2)/ propylene oxide mixture with phthalocyaninatoaluminium chloride (ClAlPc)/ tetrabutylstmmonium bromide (n-Bu4NBr) as catalyst. The high rate of reaction was attributed to rapid diffusion and the high miscibility of propylene oxide in SC-CO2 under employed conditions. Various reaction periods present different formation rate of propylene carbonate, mainly due to the existence of phase change during the reaction. The experimental results demonstrate that SC-CO2 could be used as not only an environmentally benign solvent but also a carbon precursor in synthesis.
文摘Oxide-supported copper-containing materials have attracted considerable research attention as promising candidates for acrolein formation.Nevertheless,the elucidation of the structure-performance relationships for these systems remains a scientific challenge.In this work,copper oxide clusters deposited on a high-surface-area silica support were synthesized via a deposition-precipitation approach and exhibited remarkable catalytic reactivity(up to 25.5%conversion and 66.8%selectivity)in the propylene-selective oxidation of acrolein at 300℃.Aberration-corrected high-angle annular dark-field scanning transmission electron microscopy combined with X-ray absorption fine structure measurements of the catalyst before and after the reaction confirmed the transformation of the small-sized copper oxide(CuO)clusters into cuprous oxide(Cu2O)clusters.With the aid of in situ X-ray diffraction and in situ dual beam Fourier transform infrared spectroscopy(DB-FTIR),the allyl intermediate(CH2=CHCH2*)was clearly observed,along with the as-formed Cu2O species.The intermediate can react with oxygen atoms from neighboring Cu2O species to form acrolein during the catalytic process,and the small-sized Cu2O clusters play a crucial role in the generation of acrolein via the selective oxidation of propylene.