Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes ...Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT.展开更多
The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH...The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.展开更多
The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two do...The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two domains in distinct molecular dynamics differences,namely,rigid and soft domains,where the latter is the plasticizer-rich domain.The time domain low field NMR was first used to investigate the dynamics heterogeneity of the plasticized PVB,and the results show the decreasing activated energy of components in the soft domain of plasticized PVB(E_a=20.2 kJ/mol) as compared with that of the pristine one(E_a=24.3 kJ/mol).Detailed dynamics heterogeneity was obtained by high-field NMR with site-specific features.The quadrupole-echo ~2H-NMR was adopted to elucidate the dynamics heterogeneity of the vinyl alcohol(VA) units,where only the hydroxyl group of VA is deuterated.The ~1H-^(13)C WISE NMR spectra show that there is not much difference in the mobility of the VB unit in PVB with and without plasticizer,whereas the glass transition temperature differed by approximately 53℃.This is further supported by Torchia's T_1 relaxation measurements.The origin of such an unusual phenomenon is attributed to the critical role of the remaining VA(~22%) in the soft domain,where the VA units locally aggregate through hydrogen bonding.Also,the existence of a mobility gradient in the VB unit has been demonstrated.Moreover,the mobility difference for VB with different stereo-geometry(meso or racemic conformation) is observed for the first time.This indicates the importance of modulating the ratio of meso over racemic VB for controlling the macroscopic perfo rmance of PVB.展开更多
Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carbo...Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.展开更多
The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheo...The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheological behaviour of poly(vinyl butyral)—Mowital B 60 H—(PVB) solutions dissolved in methanol and a blend of these with fumed silica nanoparticles. The preparation of the nanofibrous web and the quality of nanofibres were correlated with the rheology of the polymer solution. It was discerned that drastically intensifying shear viscosity and the elasticity of the solution exerted a negligible effect on the formation of fibres, a finding which has rarely been discussed in the literature. The morphologies and structures of the PVB/silica nanofibrous membranes were investigated by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy.展开更多
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China
文摘Poly (vinyl butyral) (PVB) hollow fiber membranes were fabricated via thermally induced phase separation (TIPS). The effects of coagulation bath temperature (CBT) on the structure and performance of membranes were investigated in detail. The morphologies of the membranes were studied by scanning electron microscopy (SEM), the performances of water permeability, rejection, breaking strength and elongation were measured, respectively. The results indicate that all the membranes have the asymmetric morphology and the thickness of the skin layer decreases and the pore size of the outer layer increases with the increase of CBT. The permeability of membranes prepared at air gap 1.0 cm and take-up speed 0.253 m/s increases from 1.047×10-7 to 5.909×10-7 m3/(m2·s-kPa) with the CBT increasing from 20 ℃ to 40℃, and sharply increases to 35.226×10 7 m3/(m2.s.kPa)once the CBT arrives at 50 ℃. While the carbonic ink rejections have no significant decrease, totally exceed 98%, but that of acid-maleic acid copolymer greatly decreases with the increase of CBT. Both the breaking strength and elongation decrease with the increase of CBT.
基金Project(21176264)supported by the National Natural Science Foundation of ChinaProject(11JJ2010)supported by the Hunan Provincial Natural Science Foundation of China+1 种基金Project(CL11096)supported by the Undergraduate Innovation Training Foundation of Central South University,ChinaProject(BL12053)supported by the Undergraduate Innovation Training Foundation of Hunan Province,China
文摘The streaming potential of poly(vinyl butyral) (PVB) hollow fiber membrane was studied in different electrolyte solutions (including NaCl, KCl, CaCl2 and MgCl2), the effects of ionic strength, ion valence and pH value on the streaming potential (SP) of the membrane were investigated. The zeta potentials and surface charge densities of the membrane were estimated on the basis of Helmholtz-Smoluchowski equation and Gouy-Chapmann theory. The results show that the PVB membrane has a weak negative charge due to the specific adsorption of ions. Moreover, the streaming potential, the zeta potential and the surface charge density of the membrane depend strongly on the salt concentration and the type and valence of ions. The iso-electric point (IEP) of the PVB membrane is arotmd 3.0 in the monovalent media (NaC1 and KC1) and 3.5 in divalent electrolytes (CaCl2 and MgCl2). A few retentions were obtained for PVB membrane in low concentration solutions. This result verifies that the negative charged membrane surface can reject inorganic solutes by means of electrostatic repulsion effect even though the size of membrane pores is much larger than the size of salts.
基金financially supported by the National Natural Science Foundation of China (No.U20A20256)。
文摘The chain dynamics heterogeneity of the poly(vinyl butyral)(PVB) plasticized by triethylene glycol bis(2-ethylhexa noate)(TEG-EH) was investigated by various solid-state NMR techniques.The plasticized PVB shows two domains in distinct molecular dynamics differences,namely,rigid and soft domains,where the latter is the plasticizer-rich domain.The time domain low field NMR was first used to investigate the dynamics heterogeneity of the plasticized PVB,and the results show the decreasing activated energy of components in the soft domain of plasticized PVB(E_a=20.2 kJ/mol) as compared with that of the pristine one(E_a=24.3 kJ/mol).Detailed dynamics heterogeneity was obtained by high-field NMR with site-specific features.The quadrupole-echo ~2H-NMR was adopted to elucidate the dynamics heterogeneity of the vinyl alcohol(VA) units,where only the hydroxyl group of VA is deuterated.The ~1H-^(13)C WISE NMR spectra show that there is not much difference in the mobility of the VB unit in PVB with and without plasticizer,whereas the glass transition temperature differed by approximately 53℃.This is further supported by Torchia's T_1 relaxation measurements.The origin of such an unusual phenomenon is attributed to the critical role of the remaining VA(~22%) in the soft domain,where the VA units locally aggregate through hydrogen bonding.Also,the existence of a mobility gradient in the VB unit has been demonstrated.Moreover,the mobility difference for VB with different stereo-geometry(meso or racemic conformation) is observed for the first time.This indicates the importance of modulating the ratio of meso over racemic VB for controlling the macroscopic perfo rmance of PVB.
基金Project (21176264) supported by the National Natural Science Foundation of ChinaProject (11JJ2010) supported by Hunan Provincial Natural Science Foundation of ChinaProject (LC13076) supported by Undergraduate Innovation Foundation of Central South University,China
文摘Copolymer of maleic acid and acrylic acid (PMA-100), combining with polyvinyl butyral (PVB) ultrafiltration membrane was used for the removal of Mn(II) from waste water by complexation-ultrafiltration. The carboxylic group content of PMA-100 and the rate of complexation reaction were measured. Effects of the mass ratio of PMA-100 to Mn(II) (n), pH, background electrolyte, etc on the rejection rate (R) and permeate flux (J) were investigated. The results show that carboxylic group content of PMA-100 is 9.5 mmol/g. The complexation of Mn(II) with PMA-100 is rapid and completed within 5 min at pH 6.0. Both R and J increase with pH increasing in the range of 2.5-7.0, and R increases with the increase of n at pH 6.0 while J is little affected. The background electrolyte leads to the decrease of R, and CaCl2 has much greater effect on R than NaCl at the same ionic strength.
基金the Grant Agency CR for the financial support of Grant Project(No.17-26808S)the support of the Ministry of Education,Youth and Sports of the Czech Republic-Programme NPU I(No.LO1504)
文摘The rheological properties in question are influenced by many factors, ranging from the characteristics of the given polymer or solvent to the flowing conditions. The primary focus of this study is to analyse the rheological behaviour of poly(vinyl butyral)—Mowital B 60 H—(PVB) solutions dissolved in methanol and a blend of these with fumed silica nanoparticles. The preparation of the nanofibrous web and the quality of nanofibres were correlated with the rheology of the polymer solution. It was discerned that drastically intensifying shear viscosity and the elasticity of the solution exerted a negligible effect on the formation of fibres, a finding which has rarely been discussed in the literature. The morphologies and structures of the PVB/silica nanofibrous membranes were investigated by scanning electron microscopy, thermogravimetric analysis and Fourier transform infrared spectroscopy.