Using H 2 diluted silane,series of μc Si∶H films are fabricated at low temperature with VHF PECVD.The thickness measurements reveal that the deposition rates are obviously enhanced with higher plasma excitation ...Using H 2 diluted silane,series of μc Si∶H films are fabricated at low temperature with VHF PECVD.The thickness measurements reveal that the deposition rates are obviously enhanced with higher plasma excitation frequency or working pressure,but increase firstly and then decrease with the increase of plasma power density.Raman spectra show that the crystallinity and the average grain sizes of the films strongly depend on the temperature of substrate and the concentration of silane.However,the plasma excitation frequency only has effect on the crystallinity,and a maximum occurs during the further increase of plasma excitation frequency.From XRD and TEM experiments,three preferential crystalline orientations (111),(220) and (311) are observed,and the average grain sizes are different for every crystalline orientation.展开更多
GaN nanobelts are synthesized using the chemical vapor deposition method with the catalyst of Ni. The mi- crostrueture, composition and photoluminescence property are characterized by x-ray diffraction, field emission...GaN nanobelts are synthesized using the chemical vapor deposition method with the catalyst of Ni. The mi- crostrueture, composition and photoluminescence property are characterized by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence spectra. The results demonstrate that the single crystalline GaN nanobelts are grown with a hexagonal wurtzite structure, in width ranging from 500nm to 2μm and length up to 10-20μm. Moreover, a large piezoelectric coefficient d33 of 20pm/V is obtained from GaN nanobelts by an atomic force microscopy and the high piezoelectric property implies that the perfect single crystallinity and the freedom of dislocation for the GaN nanobelt have significant impact on the electromechanical response.展开更多
Direct growth of GaN films on Si(001) substrate at low temperatures (620~720℃) by electron cyclotron resonance (ECR) microwave plasma enhanced metalorganic chemical vapor deposition (PEMOCVD).The crystalline phase s...Direct growth of GaN films on Si(001) substrate at low temperatures (620~720℃) by electron cyclotron resonance (ECR) microwave plasma enhanced metalorganic chemical vapor deposition (PEMOCVD).The crystalline phase structures of the films are investigated.The results of high resolution transmission electron microscopy (HRTEM) and X ray diffraction (XRD) indicate that high c axis oriented crystalline wurtzite GaN is grown on Si(001) but there is an amorphous layer formed naturally at GaN/Si interface.Both faces of the amorphous layer are flat and sharp,and the thickness of the layer is 2nm approximately cross the interface.The analysis supports that β GaN phase is not formed owing to the N x Si y amorphous layer induced by the reaction between N and Si during the initial nucleation stage.The results of XRD and atomic force microscopy (AFM) indicate that the conditions of substrate surface cleaned in situ by hydrogen plasma,GaN initial nucleation and subsequent growth are very important for the crystalline quality of GaN films.展开更多
文摘Using H 2 diluted silane,series of μc Si∶H films are fabricated at low temperature with VHF PECVD.The thickness measurements reveal that the deposition rates are obviously enhanced with higher plasma excitation frequency or working pressure,but increase firstly and then decrease with the increase of plasma power density.Raman spectra show that the crystallinity and the average grain sizes of the films strongly depend on the temperature of substrate and the concentration of silane.However,the plasma excitation frequency only has effect on the crystallinity,and a maximum occurs during the further increase of plasma excitation frequency.From XRD and TEM experiments,three preferential crystalline orientations (111),(220) and (311) are observed,and the average grain sizes are different for every crystalline orientation.
基金Supported by the Program for Changjiang Scholars and Innovative Research Team in University under Grant No IRT-14R48the National Natural Science Foundation of China under Grant No 51272158+2 种基金the Changjiang Scholar Incentive Program of the Education Ministry of China under Grant No[2009]17the China Postdoctoral Science Foundation Funded Project under Grant No 2014M551427the Hujiang Foundation of China under Grant No B14006
文摘GaN nanobelts are synthesized using the chemical vapor deposition method with the catalyst of Ni. The mi- crostrueture, composition and photoluminescence property are characterized by x-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy and photoluminescence spectra. The results demonstrate that the single crystalline GaN nanobelts are grown with a hexagonal wurtzite structure, in width ranging from 500nm to 2μm and length up to 10-20μm. Moreover, a large piezoelectric coefficient d33 of 20pm/V is obtained from GaN nanobelts by an atomic force microscopy and the high piezoelectric property implies that the perfect single crystallinity and the freedom of dislocation for the GaN nanobelt have significant impact on the electromechanical response.
文摘Direct growth of GaN films on Si(001) substrate at low temperatures (620~720℃) by electron cyclotron resonance (ECR) microwave plasma enhanced metalorganic chemical vapor deposition (PEMOCVD).The crystalline phase structures of the films are investigated.The results of high resolution transmission electron microscopy (HRTEM) and X ray diffraction (XRD) indicate that high c axis oriented crystalline wurtzite GaN is grown on Si(001) but there is an amorphous layer formed naturally at GaN/Si interface.Both faces of the amorphous layer are flat and sharp,and the thickness of the layer is 2nm approximately cross the interface.The analysis supports that β GaN phase is not formed owing to the N x Si y amorphous layer induced by the reaction between N and Si during the initial nucleation stage.The results of XRD and atomic force microscopy (AFM) indicate that the conditions of substrate surface cleaned in situ by hydrogen plasma,GaN initial nucleation and subsequent growth are very important for the crystalline quality of GaN films.