Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique...Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.展开更多
A novel low-cost sub-50nm poly-Si gate patterning technology is proposed and experimentally demonstrated.The technology is resolution-independent,ie.,it does not contain any critical photolithographic steps.The nano-s...A novel low-cost sub-50nm poly-Si gate patterning technology is proposed and experimentally demonstrated.The technology is resolution-independent,ie.,it does not contain any critical photolithographic steps.The nano-scale masking pattern for gate formation is formed according to the image transfer of an edge-defined spacer.Experimental results reveal that the resultant gate length,about 75 to 85 percent of the thickness,is determined by the thickness of the film to form the spacer.From SEM photograph,the cross-section of the poly-Si gate is seen to be an inverted-trapezoid,which is useful to reduce the gate resistance.展开更多
A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest gra...A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.展开更多
A novel approach of two-step laser crystallization for the growth of poly-Si thin film on glass substrate is investigated. Using this approach, we fabricated poly-Si thin film transistors with electron mobility of 103...A novel approach of two-step laser crystallization for the growth of poly-Si thin film on glass substrate is investigated. Using this approach, we fabricated poly-Si thin film transistors with electron mobility of 103 cm2/V·s and on/off current ratio of 1×10~7.They are better than those of the poly-Si TFTs fabricated by conventional single-step excimer laser crystallization. We also analyzed the structure of the laser crystallized poly-Si thin film by spectroscopic ellipsometry, and proposed the models to simulate the poly-Si thin film and calculated the ellipsometric spectra. The calculated results are in good agreement with the measured results.展开更多
Using a new low-temperature process (<600 ℃), the poly-Si TFT was fabricated by metal-induced lateral crystallization (MILC). An ultrathin aluminum layer was deposited on a-Si film and selectively formed by photol...Using a new low-temperature process (<600 ℃), the poly-Si TFT was fabricated by metal-induced lateral crystallization (MILC). An ultrathin aluminum layer was deposited on a-Si film and selectively formed by photolithography. The films were then annealed at 560 ℃ to obtain laterally crystallized poly-Si film, which is used as the channel area of a TFT. The poly-Si TFT showed an on/off current ratio of higher than 1×10 6 at a drain voltage of 5 V. The electrical properties are much better than TFT fabricated by conventional crystallization at 600 ℃.展开更多
We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 scc...We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.展开更多
针对具有poly-Si1-x Ge x栅的应变Si Ge p型金属氧化物半导体场效应晶体管(PMOSFET),研究了其垂直电势与电场分布,建立了考虑栅耗尽的poly-Si1-x Ge x栅情况下该器件的等效栅氧化层厚度模型,并利用该模型分析了poly-Si1-x Ge x栅及应变S...针对具有poly-Si1-x Ge x栅的应变Si Ge p型金属氧化物半导体场效应晶体管(PMOSFET),研究了其垂直电势与电场分布,建立了考虑栅耗尽的poly-Si1-x Ge x栅情况下该器件的等效栅氧化层厚度模型,并利用该模型分析了poly-Si1-x Ge x栅及应变Si Ge层中Ge组分对等效氧化层厚度的影响.研究了应变Si Ge PMOSFET热载流子产生的机理及其对器件性能的影响,以及引起应变Si Ge PMOSFET阈值电压漂移的机理,并建立了该器件阈值电压漂移模型,揭示了器件阈值电压漂移随电应力施加时间、栅极电压、polySi1-x Ge x栅及应变Si Ge层中Ge组分的变化关系.并在此基础上进行了实验验证,在电应力施加10000 s时,阈值电压漂移0.032 V,与模拟结果基本一致,为应变Si Ge PMOSFET及相关电路的设计与制造提供了重要的理论与实践基础.展开更多
This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- s...This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- sistor (TFT), three switching TFTs, and one storage capacitor, can effectively compensate for the threshold voltage variation in poly-Si and the OLED degradation. As there is no light emission, except for during the emitting period, and a small number of devices used in the proposed pixel circuit, a high contrast ratio and a high pixel aperture ratio can be easily achieved. Simulation results by SMART-SPICE software show that the non-uniformity of the OLED current for the proposed pixel circuit is significantly decreased (〈 10%) with an average value of 2.63%, while that of the conventional 2T1C is 103%. Thus the brightness uniformity of AMOLED displays can be improved by using the proposed pixel circuit.展开更多
The mechanism of hydrogen plasma passivation for poly-crystalline silicon (poly-Si) thin films is investigated by optical emission spectroscopy (OES) combined with Hall mobility, Raman spectra, absorption coeffici...The mechanism of hydrogen plasma passivation for poly-crystalline silicon (poly-Si) thin films is investigated by optical emission spectroscopy (OES) combined with Hall mobility, Raman spectra, absorption coefficient spectra, and so on. It is found that different kinds of hydrogen plasma radicals are responsible for passivating different defects in polySi. The Ha with lower energy is mainly responsible for passivating the solid phase crystallization (SPC) poly-Si whose crystallization precursor is deposited by plasma-enhanced chemical vapor deposition (PECVD). The H* with higher energy may passivate the defects related to teh Ni impurity around the grain boundaries more effectively. In addition, Hβ and H7 with the highest energy are required to passivate intra-grain defects in the poly-Si crystallized by SPC but whose precursor is deposited bv low pressure chemical vapor deposition(LPCVD)展开更多
Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temp...Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on deposition rate, crystallinity, grain size and the configuration of H existing in poly-Si film were investigated. The results show that, comparing with H2 dilution, Ar dilution could significantly decrease the concentration of H on the growing surface. When the substrate temperature increased, the deposition rate increased and the concentration of H decreased monotonously, but the crystallinity and the grain size of poly-Si films exhibited sophisticated trends. It is proposed that the crystallinity of the films is determined by a competing balance of the self-diffusion activity of Si atoms and the deposition rate. At substrate temperature of 200℃, the deposited film exhibits the maximum poly-Si volume fraction of 79%. Based on these results, higher substrate temperature is suggested to prepare the poly-Si films with advanced stability and compromised crystallinity at high deposition rate.展开更多
Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The cry...Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.展开更多
An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal e tching conditions have been determined by etching rate c...An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal e tching conditions have been determined by etching rate calculation, scanning ele ctron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentr ation which in turn leads to the dissimilarity of etching speed. Textured polycr ystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special rela tionship between reflectivity and etching rate was studied. Reflectance measurem ents show that isotropic texturing is one of the suitable techniques for texturi ng polycrystalline silicon wafers and benefits solar cells performances.展开更多
In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate...In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate on the deposition efficiency and the film property were investigated by comparing with H2. The results indicated that the deposition rate of using Ar as discharge gas was 1.5-2 times higher than that of using H2, while the preferred orientations and the grain sizes of the films were analogous. Film crystallinity increased with the increase of Ar flow rate. Optimized flow ratio of SiH4 to Ar was obtained as F(SiH4): F(Ar)=10:70 for the highest deposition rate.展开更多
基金the National Renewable Energy Laboratory,operated by Alliance for Sustainable Energy,LLC,for the U.S.Department of Energy(DOE)under Contract No.DE-AC36-08GO28308.
文摘Polycrystalline Si(poly-Si)-based passivating contacts are promising candidates for high-efficiency crystalline Si solar cells.We show that nanosecond-scale pulsed laser melting(PLM)is an industrially viable technique to fabricate such contacts with precisely controlled dopant concentration profiles that exceed the solid solubility limit.We demonstrate that conventionally doped,hole-selective poly-Si/SiO_(x)contacts that provide poor surface passivation of c-Si can be replaced with Ga-or B-doped contacts based on non-equilibrium doping.We overcome the solid solubility limit for both dopants in poly-Si by rapid cooling and recrystallization over a timescale of∼25 ns.We show an active Ga dopant concentration of∼3×10^(20)cm^(−3)in poly-Si which is six times higher than its solubility limit in c-Si,and a B dopant concentration as high as∼10^(21) cm^(−3).We measure an implied open-circuit voltage of 735 mV for Ga-doped poly-Si/SiO_(x)contacts on Czochralski Si with a low contact resistivity of 35.5±2.4 mΩcm^(2).Scanning spreading resistance microscopy and Kelvin probe force microscopy show large diffusion and drift current in the p-n junction that contributes to the low contact resistivity.Our results suggest that PLM can be extended for hyperdoping of other semiconductors with low solubility atoms to enable high-efficiency devices.
文摘A novel low-cost sub-50nm poly-Si gate patterning technology is proposed and experimentally demonstrated.The technology is resolution-independent,ie.,it does not contain any critical photolithographic steps.The nano-scale masking pattern for gate formation is formed according to the image transfer of an edge-defined spacer.Experimental results reveal that the resultant gate length,about 75 to 85 percent of the thickness,is determined by the thickness of the film to form the spacer.From SEM photograph,the cross-section of the poly-Si gate is seen to be an inverted-trapezoid,which is useful to reduce the gate resistance.
基金This work was supported by the Guangdong Provincial Natural Science Foundation of China No.990781.
文摘A solid phase crystallizing method has been developed to grow a Si crystal at tem-peratures as low as 550 ℃. Using this method, a high-quality thin-film polycrystalline silicon (Poly-Si) was obtained. The largest grain size, examined with X-ray diffraction spectroscopy and scanning electron microscopy images of recrystallized samples, is approximately 1 /μm for substrate temperature at 300 ℃ and annealed at 550℃ for 3 hours.
文摘A novel approach of two-step laser crystallization for the growth of poly-Si thin film on glass substrate is investigated. Using this approach, we fabricated poly-Si thin film transistors with electron mobility of 103 cm2/V·s and on/off current ratio of 1×10~7.They are better than those of the poly-Si TFTs fabricated by conventional single-step excimer laser crystallization. We also analyzed the structure of the laser crystallized poly-Si thin film by spectroscopic ellipsometry, and proposed the models to simulate the poly-Si thin film and calculated the ellipsometric spectra. The calculated results are in good agreement with the measured results.
文摘Using a new low-temperature process (<600 ℃), the poly-Si TFT was fabricated by metal-induced lateral crystallization (MILC). An ultrathin aluminum layer was deposited on a-Si film and selectively formed by photolithography. The films were then annealed at 560 ℃ to obtain laterally crystallized poly-Si film, which is used as the channel area of a TFT. The poly-Si TFT showed an on/off current ratio of higher than 1×10 6 at a drain voltage of 5 V. The electrical properties are much better than TFT fabricated by conventional crystallization at 600 ℃.
文摘We have developed an apparatus for producing high-density hydrogen plasma. The atomic hydrogen density was 3.0 × 1021 m?3 at a pressure of 30 Pa, a microwave power of 1000 W, and a hydrogen gas flow rate of 5 sccm. We confirmed that the temperatures of tungsten films increased to above 1000?C within 5 s when they were exposed to hydrogen plasma formed using the apparatus. We applied this phenomenon to the selective heat treatment of tungsten films deposited on amorphous silicon films on glass substrates and formed polycrystalline silicon films. To utilize this method, we can perform the crystalline process only on device regions. TFTs were fabricated on the polycrystalline silicon films and the electron mobilities of 60 cm2/Vs were obtained.
文摘针对具有poly-Si1-x Ge x栅的应变Si Ge p型金属氧化物半导体场效应晶体管(PMOSFET),研究了其垂直电势与电场分布,建立了考虑栅耗尽的poly-Si1-x Ge x栅情况下该器件的等效栅氧化层厚度模型,并利用该模型分析了poly-Si1-x Ge x栅及应变Si Ge层中Ge组分对等效氧化层厚度的影响.研究了应变Si Ge PMOSFET热载流子产生的机理及其对器件性能的影响,以及引起应变Si Ge PMOSFET阈值电压漂移的机理,并建立了该器件阈值电压漂移模型,揭示了器件阈值电压漂移随电应力施加时间、栅极电压、polySi1-x Ge x栅及应变Si Ge层中Ge组分的变化关系.并在此基础上进行了实验验证,在电应力施加10000 s时,阈值电压漂移0.032 V,与模拟结果基本一致,为应变Si Ge PMOSFET及相关电路的设计与制造提供了重要的理论与实践基础.
基金Project supported by the National Natural Science Foundation of China(No.61204089)the Guangdong Natural Science Foundation(No.S2012010008648)the Outstanding Doctoral Dissertation of Guangdong Province(No.sybzzxm201026)
文摘This paper presents a new poly-Si pixel circuit employing AC driving mode for active matrix organic light-emitting diode (AMOLED) displays. The proposed pixel circuit, which consists of one driving thin-film tran- sistor (TFT), three switching TFTs, and one storage capacitor, can effectively compensate for the threshold voltage variation in poly-Si and the OLED degradation. As there is no light emission, except for during the emitting period, and a small number of devices used in the proposed pixel circuit, a high contrast ratio and a high pixel aperture ratio can be easily achieved. Simulation results by SMART-SPICE software show that the non-uniformity of the OLED current for the proposed pixel circuit is significantly decreased (〈 10%) with an average value of 2.63%, while that of the conventional 2T1C is 103%. Thus the brightness uniformity of AMOLED displays can be improved by using the proposed pixel circuit.
基金Project supported by the National Natural Science Foundation of China(Grant No.61076006)the Flat-Panel Display Special Project of China’s 863 Plan(Grant No.2008AA03A335)
文摘The mechanism of hydrogen plasma passivation for poly-crystalline silicon (poly-Si) thin films is investigated by optical emission spectroscopy (OES) combined with Hall mobility, Raman spectra, absorption coefficient spectra, and so on. It is found that different kinds of hydrogen plasma radicals are responsible for passivating different defects in polySi. The Ha with lower energy is mainly responsible for passivating the solid phase crystallization (SPC) poly-Si whose crystallization precursor is deposited by plasma-enhanced chemical vapor deposition (PECVD). The H* with higher energy may passivate the defects related to teh Ni impurity around the grain boundaries more effectively. In addition, Hβ and H7 with the highest energy are required to passivate intra-grain defects in the poly-Si crystallized by SPC but whose precursor is deposited bv low pressure chemical vapor deposition(LPCVD)
文摘Polycrystalline silicon (poly-Si) films were deposited using Ar diluted SiH4 gaseous mixture by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD). The effects of the substrate temperature on deposition rate, crystallinity, grain size and the configuration of H existing in poly-Si film were investigated. The results show that, comparing with H2 dilution, Ar dilution could significantly decrease the concentration of H on the growing surface. When the substrate temperature increased, the deposition rate increased and the concentration of H decreased monotonously, but the crystallinity and the grain size of poly-Si films exhibited sophisticated trends. It is proposed that the crystallinity of the films is determined by a competing balance of the self-diffusion activity of Si atoms and the deposition rate. At substrate temperature of 200℃, the deposited film exhibits the maximum poly-Si volume fraction of 79%. Based on these results, higher substrate temperature is suggested to prepare the poly-Si films with advanced stability and compromised crystallinity at high deposition rate.
基金supported by the National Natural Science Foundation of China(Grant Nos.61301077 and 61574096)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20130319)the Science and Technology Program of Suzhou City,China(Grant No.SYG201538)
文摘Crystallization of amorphous silicon(a-Si) which starts from the middle of the a-Si region separating two adjacent metal-induced crystallization(MIC) polycrystalline silicon(poly-Si) regions is observed. The crystallization is found to be related to the distance between the neighboring nickel-introducing MIC windows. Trace nickel that diffuses from the MIC window into the a-Si matrix during the MIC heat-treatment is experimentally discovered, which is responsible for the crystallization of the a-Si beyond the MIC front. A minimum diffusion coefficient of 1.84×10^-9cm^2/s at 550℃ is estimated for the trace nickel diffusion in a-Si.
基金This work was supported by the Nationa!Natural Science Foundation of China(No.50376067)National High Technical Research and Development Programme of China(No.2001AA513060).
文摘An isotropic etching technique of texturing silicon solar cells has been applied to polycrystalline silicon wafers with different acid concentrations. Optimal e tching conditions have been determined by etching rate calculation, scanning ele ctron microscope (SEM) image and reflectance measurement. The surface morphology of the textured wafers varies in accordance with the different etchant concentr ation which in turn leads to the dissimilarity of etching speed. Textured polycr ystalline silicon wafer surfaces display randomly located etched pits which can reduce the surface reflection and enhance the light absorption. The special rela tionship between reflectivity and etching rate was studied. Reflectance measurem ents show that isotropic texturing is one of the suitable techniques for texturi ng polycrystalline silicon wafers and benefits solar cells performances.
文摘In this paper, polycrystalline silicon films were deposited by electron cyclotron resonance plasma-enhanced chemical vapor deposition (ECR-PECVD) using SiH4/Ar and SiH4/H2 gaseous mixture. Effects of argon flow rate on the deposition efficiency and the film property were investigated by comparing with H2. The results indicated that the deposition rate of using Ar as discharge gas was 1.5-2 times higher than that of using H2, while the preferred orientations and the grain sizes of the films were analogous. Film crystallinity increased with the increase of Ar flow rate. Optimized flow ratio of SiH4 to Ar was obtained as F(SiH4): F(Ar)=10:70 for the highest deposition rate.