期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Gate-Capacitance-Shift Approach and Compact Modeling for Quantum Mechanical Effects in Poly-Gates
1
作者 张大伟 章浩 +1 位作者 田立林 余志平 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2004年第12期1599-1605,共7页
A new approach,gate-capacitance-shift (GCS) approach,is described for compact modeling.This approach is piecewise for various physical effects and comprises the gate-bias-dependent nature of corrections in the nanosca... A new approach,gate-capacitance-shift (GCS) approach,is described for compact modeling.This approach is piecewise for various physical effects and comprises the gate-bias-dependent nature of corrections in the nanoscale regime.Additionally,an approximate-analytical solution to the quantum mechanical (QM) effects in polysilicon (poly)-gates is obtained based on the density gradient model.It is then combined with the GCS approach to develop a compact model for these effects.The model results tally well with numerical simulation.Both the model results and simulation results indicate that the QM effects in poly-gates of nanoscale MOSFETs are non-negligible and have an opposite influence on the device characteristics as the poly-depletion (PD) effects do. 展开更多
关键词 compact model nanoscale regime GCS approach QM effects in poly-gates
下载PDF
Application of the Shrinking Particle Model for the Evaluation of Molecular Recyclability of PET versus Semi-Aromatic Polyesters
2
作者 Jack van Schijndel Sanne de Krom +2 位作者 Dennis Molendijk Koen van Beurden Amarante Böttger 《Open Journal of Physical Chemistry》 2024年第2期21-35,共15页
The molecular recyclability of poly (ethylene terephthalate) (PET) and three semi-aromatic polyesters poly (phloretic acid) (poly-H), poly (dihydroferulic acid) (poly-G), and poly (dihydrosinapinic acid) (poly-S) is e... The molecular recyclability of poly (ethylene terephthalate) (PET) and three semi-aromatic polyesters poly (phloretic acid) (poly-H), poly (dihydroferulic acid) (poly-G), and poly (dihydrosinapinic acid) (poly-S) is evaluated in this study. PET is an extensively used aromatic polyester, and poly-H, poly-G, and poly-S can be considered semi-aromatic poly (lactic acid) modifications. All these polyesters have been depolymerized at neutral pH and by acid- and base-catalyzed hydrolysis at two temperatures, i.e., 50˚C and 80˚C. Base-catalyzed depolymerization of virgin PET leads to an isolated yield of 38% after 48 hours of reaction at 80˚C. Contrary to these results for PET, almost all the monomers of the semi-aromatic polyesters poly-H, poly-G, and poly-S are recovered with isolated yields larger than 90% at the same temperature after 15 minutes in a facile manner. A shrinking particle model used to determine the global kinetics of the base-catalyzed depolymerization showed that the rate rises with increasing temperature. Using the shrinking particle model, the intrinsic reaction rate constants were determined. It has been demonstrated that the rate coefficients of the depolymerization of the semi-aromatic polyesters poly-H, poly-G, and poly-S are between 2 and 3 orders of magnitude higher than those for PET. 展开更多
关键词 DEPOLYMERIZATION Molecular Recycling Poly-H poly-g Poly-S PET Circular Polymers
下载PDF
The Larger Grain and (111)-Orientation Planes of Poly-Ge Thin Film Grown on SiO<sub>2</sub>Substrate by Al-Induced Crystallization 被引量:1
3
作者 Shaoguang Dong Junhuo Zhuang Yaguang Zeng 《Journal of Materials Science and Chemical Engineering》 2018年第2期22-32,共11页
Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very importan... Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very important for the superior performance electronics and solar cells. We discussed the 50 nm thickness poly-Ge thin film grown on SiO2 substrate by Alinduced crystallization focusing on the lower annealing temperature and the diffusion control interlayer between Ge and Al thin film. The (111)-orientation planes ratio of poly-Ge thin film achieve as high as 90% by merging the lower annealing temperature (325℃) and the GeOx diffusion control interlayer. Moreover, we find the lack of defects on poly-Ge thin film surface and the larger average grains size of poly-Ge thin film over 12 μm were demonstrated by electron backscatter diffraction measurement. Our results turn on the feasibility of fabricating electronic and optical device with poly-Ge thin film grown on SiO2 substrate. 展开更多
关键词 Al-Induced Crystallization poly-ge Thin Film Diffusion Control INTERLAYER Lower Annealing Temperature
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部