hap, a novel human apoptosis-inducing gene which can interact with another newly discovered apoptosis-inducing geneASY, was identified, by cloning its cDNAs from human lung cell line (WI-38) cDNA library. Two major mR...hap, a novel human apoptosis-inducing gene which can interact with another newly discovered apoptosis-inducing geneASY, was identified, by cloning its cDNAs from human lung cell line (WI-38) cDNA library. Two major mRNA species (1.8 and 2.7 kb in length, respectively) were previously identified by Northern blot analysis of poly(A)+ RNA from human multiple tissues using partialhap cDNA as a probe. In the present work, the molecular mechanism accounting for the generation of the twohap transcripts were investigated. The rapid amplification of cDNA 3′-ends (3′-RACE) technique and the sequential Southern blot analysis, in conjunction with the sequencing analysis demonstrated that the twohap transcripts derive from the alternative polyadenylation site selection: a AATAAA signal at position 1 528–1 533 nt for the 1.8 kbhap mRNA: and a AATAAA signal at position 2 375–2 380 nt for the 2.7 kbhap mRNA. Furthermore, a number of regulatory elements withinhap 3′-untranslated region (3′-UTR) were also examined.展开更多
Alternative polyadenylation(APA)is a molecular process that generates diversity at the 3′end of RNA polymeraseⅡtranscripts from over 60%of human genes.APA is derived from the existence of multiple polyadenylation si...Alternative polyadenylation(APA)is a molecular process that generates diversity at the 3′end of RNA polymeraseⅡtranscripts from over 60%of human genes.APA is derived from the existence of multiple polyadenylation signals(PAS)within the same transcript,and results in the differential inclusion of sequence information at the 3′end.While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene,most APA occurs within the untranslated region(3′UTR)and changes the length and content of these non-coding sequences.APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms,and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development.Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression.Here,we review the current knowledge of APA and its impacts on mRNA stability,translation,localization and protein localization.We also discuss the implications of APA dysregulation in cancer research and therapy.展开更多
基金Sopported by the National Nature Science Foundation grant of P. R. China( 39880 0 31)
文摘hap, a novel human apoptosis-inducing gene which can interact with another newly discovered apoptosis-inducing geneASY, was identified, by cloning its cDNAs from human lung cell line (WI-38) cDNA library. Two major mRNA species (1.8 and 2.7 kb in length, respectively) were previously identified by Northern blot analysis of poly(A)+ RNA from human multiple tissues using partialhap cDNA as a probe. In the present work, the molecular mechanism accounting for the generation of the twohap transcripts were investigated. The rapid amplification of cDNA 3′-ends (3′-RACE) technique and the sequential Southern blot analysis, in conjunction with the sequencing analysis demonstrated that the twohap transcripts derive from the alternative polyadenylation site selection: a AATAAA signal at position 1 528–1 533 nt for the 1.8 kbhap mRNA: and a AATAAA signal at position 2 375–2 380 nt for the 2.7 kbhap mRNA. Furthermore, a number of regulatory elements withinhap 3′-untranslated region (3′-UTR) were also examined.
文摘Alternative polyadenylation(APA)is a molecular process that generates diversity at the 3′end of RNA polymeraseⅡtranscripts from over 60%of human genes.APA is derived from the existence of multiple polyadenylation signals(PAS)within the same transcript,and results in the differential inclusion of sequence information at the 3′end.While APA can occur between two PASs allowing for generation of transcripts with distinct coding potential from a single gene,most APA occurs within the untranslated region(3′UTR)and changes the length and content of these non-coding sequences.APA within the 3′UTR can have tremendous impact on its regulatory potential of the mRNA through a variety of mechanisms,and indeed this layer of gene expression regulation has profound impact on processes vital to cell growth and development.Recent studies have particularly highlighted the importance of APA dysregulation in cancer onset and progression.Here,we review the current knowledge of APA and its impacts on mRNA stability,translation,localization and protein localization.We also discuss the implications of APA dysregulation in cancer research and therapy.