The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility gre...The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries.展开更多
Two master-batches,polyamide 66 (PA66)/organo-montmorillonite (OMMT) and polyamide 6 (PA6)/OMMT, prepared by melt compounding with methyl methacrylate (MMA) as co-intercalation agent,have been used to prepare nearly e...Two master-batches,polyamide 66 (PA66)/organo-montmorillonite (OMMT) and polyamide 6 (PA6)/OMMT, prepared by melt compounding with methyl methacrylate (MMA) as co-intercalation agent,have been used to prepare nearly exfoliated PA661montmorillonite (MMT) nanocomposites.The resulting nanocomposites are compared in view of their morphology and properties.Nano-scale dispersion of OMMT is realized in both types of nanocomposites,as revealed by XRD,TEM and Molau tests.PA66/MMT nanocomposites having superior mecha...展开更多
The effects of interfacial modifier on the mechanical properties of kaolin-filled polyamide 6 (PA6) have been studied. The interracial interaction between polyamide 6 and kaolin has been character ized by means of inf...The effects of interfacial modifier on the mechanical properties of kaolin-filled polyamide 6 (PA6) have been studied. The interracial interaction between polyamide 6 and kaolin has been character ized by means of infrared spectroscopy (IR) and scanning electron microscopy (SEM). The results show that the role of the interracial modifier lies in forming an elastic interlayer with good adhesion between kaolin and PA 6. A composite with high impact strength, high tensile strength and high elastic modulus can be obtained by inserting the elastic interfacial modifier into the rigid-particle-filled polymer system.展开更多
We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of po...We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of polyamide-6/TiO2 composite nanofibers was investigated. The resultant nanofibers exhibit good incorporation of TiO2 nanoparticles. The doping of TiO2 nanoparticles into the polyamide-6 nanofibers were confirmed by high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Photoluminescence(PL) and cathodoluminescence(CL) spectroscopy were also used to characterize the samples.The PL and CL spectra reveal that the as-spun polyamide-6/TiO2 composite nanofibers consisted of overlapping of two broad emission bands due to the contribution of polyamide-6(centered at about 475 nm), which might originate from organic functional groups of polyamide-6 and TiO2 nanoparticles(centered around 550 nm). The electrical conductivity of the polyamide-6/TiO2 composite nanofibers on different substrates was carried out.It was found that the electrical conductivity of the polyamide-6/TiO2 composite nanofibers on silicon substrate was in the range of 13 μA, and about 1 to 20 p A for the paper and glass substrates.展开更多
In this paper the physical influences on the mechanical behavior of a Polyamide 6 (PA 6)/Mont- morillonit (MMT)-nanocomposite are examined by a selected structure modification in a numerical parameter study. Experimen...In this paper the physical influences on the mechanical behavior of a Polyamide 6 (PA 6)/Mont- morillonit (MMT)-nanocomposite are examined by a selected structure modification in a numerical parameter study. Experimental data of tensile tests of three different volume fractions at ambient temperature are used as reference. These were compared to homogenized stress-strain curves calculated with 3D representative volume elements (RVE) under periodic boundary conditions, in which the curve areas are considered until the tensile yield strength is reached. Besides the influence of filler orientation, exfoliation and its volume fraction, both adhesive interface behavior between the filler and matrix, and local partially crystalline interphases around the MMT-plates were also taken into account. A good approximation of the numerical representation of the experimental curves was achieved only after the introduction of the 30 - 40 nm thick partially crystalline interphases with higher stiffness and strength around the MMT-plates. The use of an exclusively isotropic matrix led to an underestimation of the mechanical values. The local modifications of the morphology were assumed to be transversely isotropic both in the elastic and in the plastic region. The transverse plane is defined by the lateral particle surface. Compared with the experimentally determined values of the corresponding Young’s Modulus, an excellent correlation was achieved. The yield strength for the largest volume fraction shows the best agreement with experimental values.展开更多
This paper discusses the utilization of nano-sized fillers in Polyamide 6 to increase the fracture resistance of the composites, which are crucial for various engineering applications. The toughening of the composites...This paper discusses the utilization of nano-sized fillers in Polyamide 6 to increase the fracture resistance of the composites, which are crucial for various engineering applications. The toughening of the composites is achieved by using dispersed nano-scaled rubber particles (Polyether block copolymer) as the inclusion in Polyamide 6 matrix. For a better understanding of the mechanical behavior of the composites, it is indispensable to use analytical and numerical models for evaluating the overall mechanical behavior and damage mechanism of the composite. In this work the toughening mechanism is studied through literature review and by analytical modeling. The mechanical behavior of the composites such as elastic plastic and damage properties are calculated numerically with 3D representative volume element (RVE) models. The numerical results are compared with previously obtained experiments. The influence of volume fraction and aspect ratio of inclusions on the macroscopic stress strain curve as well as the size effect of inclusions and also the failure properties of the composite are studied in detail.展开更多
In this study,CuO nanoparticles are pre-modified with styrene-maleic anhydride copolymers(SMAs)of different molecular weights and MAH contents.Then the pre-modified CuO nanoparticles(CuO-SMAs)are added to the PA6/SEBS...In this study,CuO nanoparticles are pre-modified with styrene-maleic anhydride copolymers(SMAs)of different molecular weights and MAH contents.Then the pre-modified CuO nanoparticles(CuO-SMAs)are added to the PA6/SEBS(Styrene Ethylene Butylene Styrene copolymer)(40/60 wt/wt)polymer blends with a co-continuous morphology.When SMA3(MAH=8 wt%,M_(n)=250000 g/mol)is used to modify CuO nanoparticles,and the grafting degree of SMA3 on the surface of CuO reaches 2.74 wt%,90.71%of the added mCuO-SMA3 nanoparticles can be located at the interface of PA6 and SEBS.A porous PA6 membrane with CuO nanoparticles located at the pore walls can be obtained after the SEBS phase is etched with xylene.The catalytic reaction velocity constant(k)for the reduction of p-nitrophenol in NaBH_(4)solutions with the PA6/mCuO-SMA3 porous membrane can reach 1.0040 min^(-1).This work provides a feasible and straightforward method for the preparation of porous polymer membranes with functional nanoparticles located at the wall of the pores.展开更多
Polyamide (PA6) and polycarbonate (PC) were prepared by a Brabender mixer ( PLV- 151) at 240℃ with 30 rpm for duration of 8 and 6 minutes respectively. The epoxy resin (E) addition can lead to substantial mic...Polyamide (PA6) and polycarbonate (PC) were prepared by a Brabender mixer ( PLV- 151) at 240℃ with 30 rpm for duration of 8 and 6 minutes respectively. The epoxy resin (E) addition can lead to substantial microstructural changes in the PA6/PC blends. Scanning electron microscope (SEM) was used to observe the mixtures characterized by the domains of clearly segregated homophases and voids between the two polymers. PA6/PC of polyamide 6 and polycarbonate with epoxy resin addition under the composition ratio of 20/80, 20/80/1, 40/60/1 and 40/60, were tested to verify the key role of epoxy in promoting the compatibility of PA6 with PC during blending.展开更多
基金the National Natural Science Foundation of China(51973157,51673148 and 51678411),Chinathe China Postdoctoral Science Foundation Grant(2019 M651047),Chinathe Science and Technology Plans of Tianjin(No.17PTSYJC00040 and 18PTSYJC00180),China for the financial support。
文摘The utilization of all-solid-state electrolytes is considered to be an effective way to enhance the safety performance of lithium metal batteries.However,the low ionic conductivity and poor interface compatibility greatly restrict the development of all-solid-state battery.In this study,a composite electrolyte combining the electrospun polyamide 6(PA6)nanofiber membrane with hierarchical structure and the polyethylene oxide(PEO)polymer is investigated.The introduction of PA6 nanofiber membrane can effectively reduce the crystallinity of the polymer,so that the ionic conductivity of the electrolyte can be enhanced.Moreover,it is found that the presence of finely branched fibers in the hierarchical structure PA6 membrane allows the polar functional groups(C=O and N-H bonds)to be fully exposed,which provides sufficient functional sites for lithium ion transport and helps to regulate the uniform deposition of lithium metal.Moreover,the hierarchical structure can enhance the mechanical strength(9.2 MPa)of the electrolyte,thereby effectively improving the safety and cycle stability of the battery.The prepared Li/Li symmetric battery can be stably cycled for 1500 h under 0.3 mA cm^(-2) and 60℃.This study demonstrates that the prepared electrolyte has excellent application prospects in the next generation all-solid-state lithium metal batteries.
文摘Two master-batches,polyamide 66 (PA66)/organo-montmorillonite (OMMT) and polyamide 6 (PA6)/OMMT, prepared by melt compounding with methyl methacrylate (MMA) as co-intercalation agent,have been used to prepare nearly exfoliated PA661montmorillonite (MMT) nanocomposites.The resulting nanocomposites are compared in view of their morphology and properties.Nano-scale dispersion of OMMT is realized in both types of nanocomposites,as revealed by XRD,TEM and Molau tests.PA66/MMT nanocomposites having superior mecha...
基金The project was supported by National Natural Science Foundation of China
文摘The effects of interfacial modifier on the mechanical properties of kaolin-filled polyamide 6 (PA6) have been studied. The interracial interaction between polyamide 6 and kaolin has been character ized by means of infrared spectroscopy (IR) and scanning electron microscopy (SEM). The results show that the role of the interracial modifier lies in forming an elastic interlayer with good adhesion between kaolin and PA 6. A composite with high impact strength, high tensile strength and high elastic modulus can be obtained by inserting the elastic interfacial modifier into the rigid-particle-filled polymer system.
基金supported by a grant from the Korean Ministry of Education,Science and Technology(The Regional Core Research Program/Center for Healthcare Technology&Development,Chonbuk National University,Jeonju 561-756 Republic of Korea)
文摘We report on the synthesis and characterizations of TiO2 nanoparticles embedded in polyamide-6composite nanofibers by using electrospinning technique. The influence of substrate on the electrical characteristics of polyamide-6/TiO2 composite nanofibers was investigated. The resultant nanofibers exhibit good incorporation of TiO2 nanoparticles. The doping of TiO2 nanoparticles into the polyamide-6 nanofibers were confirmed by high resolution transmission electron microscopy and energy dispersive X-ray spectroscopy. Photoluminescence(PL) and cathodoluminescence(CL) spectroscopy were also used to characterize the samples.The PL and CL spectra reveal that the as-spun polyamide-6/TiO2 composite nanofibers consisted of overlapping of two broad emission bands due to the contribution of polyamide-6(centered at about 475 nm), which might originate from organic functional groups of polyamide-6 and TiO2 nanoparticles(centered around 550 nm). The electrical conductivity of the polyamide-6/TiO2 composite nanofibers on different substrates was carried out.It was found that the electrical conductivity of the polyamide-6/TiO2 composite nanofibers on silicon substrate was in the range of 13 μA, and about 1 to 20 p A for the paper and glass substrates.
文摘In this paper the physical influences on the mechanical behavior of a Polyamide 6 (PA 6)/Mont- morillonit (MMT)-nanocomposite are examined by a selected structure modification in a numerical parameter study. Experimental data of tensile tests of three different volume fractions at ambient temperature are used as reference. These were compared to homogenized stress-strain curves calculated with 3D representative volume elements (RVE) under periodic boundary conditions, in which the curve areas are considered until the tensile yield strength is reached. Besides the influence of filler orientation, exfoliation and its volume fraction, both adhesive interface behavior between the filler and matrix, and local partially crystalline interphases around the MMT-plates were also taken into account. A good approximation of the numerical representation of the experimental curves was achieved only after the introduction of the 30 - 40 nm thick partially crystalline interphases with higher stiffness and strength around the MMT-plates. The use of an exclusively isotropic matrix led to an underestimation of the mechanical values. The local modifications of the morphology were assumed to be transversely isotropic both in the elastic and in the plastic region. The transverse plane is defined by the lateral particle surface. Compared with the experimentally determined values of the corresponding Young’s Modulus, an excellent correlation was achieved. The yield strength for the largest volume fraction shows the best agreement with experimental values.
文摘This paper discusses the utilization of nano-sized fillers in Polyamide 6 to increase the fracture resistance of the composites, which are crucial for various engineering applications. The toughening of the composites is achieved by using dispersed nano-scaled rubber particles (Polyether block copolymer) as the inclusion in Polyamide 6 matrix. For a better understanding of the mechanical behavior of the composites, it is indispensable to use analytical and numerical models for evaluating the overall mechanical behavior and damage mechanism of the composite. In this work the toughening mechanism is studied through literature review and by analytical modeling. The mechanical behavior of the composites such as elastic plastic and damage properties are calculated numerically with 3D representative volume element (RVE) models. The numerical results are compared with previously obtained experiments. The influence of volume fraction and aspect ratio of inclusions on the macroscopic stress strain curve as well as the size effect of inclusions and also the failure properties of the composite are studied in detail.
基金the National Natural Science Foundation of China(Grant Nos.51973052,51473047 and 52003077)Natural Science Foundation of Hubei Province(2019CFB396)for the support of this work.
文摘In this study,CuO nanoparticles are pre-modified with styrene-maleic anhydride copolymers(SMAs)of different molecular weights and MAH contents.Then the pre-modified CuO nanoparticles(CuO-SMAs)are added to the PA6/SEBS(Styrene Ethylene Butylene Styrene copolymer)(40/60 wt/wt)polymer blends with a co-continuous morphology.When SMA3(MAH=8 wt%,M_(n)=250000 g/mol)is used to modify CuO nanoparticles,and the grafting degree of SMA3 on the surface of CuO reaches 2.74 wt%,90.71%of the added mCuO-SMA3 nanoparticles can be located at the interface of PA6 and SEBS.A porous PA6 membrane with CuO nanoparticles located at the pore walls can be obtained after the SEBS phase is etched with xylene.The catalytic reaction velocity constant(k)for the reduction of p-nitrophenol in NaBH_(4)solutions with the PA6/mCuO-SMA3 porous membrane can reach 1.0040 min^(-1).This work provides a feasible and straightforward method for the preparation of porous polymer membranes with functional nanoparticles located at the wall of the pores.
文摘Polyamide (PA6) and polycarbonate (PC) were prepared by a Brabender mixer ( PLV- 151) at 240℃ with 30 rpm for duration of 8 and 6 minutes respectively. The epoxy resin (E) addition can lead to substantial microstructural changes in the PA6/PC blends. Scanning electron microscope (SEM) was used to observe the mixtures characterized by the domains of clearly segregated homophases and voids between the two polymers. PA6/PC of polyamide 6 and polycarbonate with epoxy resin addition under the composition ratio of 20/80, 20/80/1, 40/60/1 and 40/60, were tested to verify the key role of epoxy in promoting the compatibility of PA6 with PC during blending.