期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites
1
作者 ZHANG Ranran QIAN Jun +2 位作者 YE Shuangli ZHOU Yihua ZHU Ziqiang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2018年第5期1281-1287,共7页
Ag-Pt bimetallic nanoparticles decorated on MWCNTs/PANI nanocomposites have been synthesized by in-situ chemical oxidative polymerization and chemical co-reduction method. The Fourier transform infrared(FT-IR) spect... Ag-Pt bimetallic nanoparticles decorated on MWCNTs/PANI nanocomposites have been synthesized by in-situ chemical oxidative polymerization and chemical co-reduction method. The Fourier transform infrared(FT-IR) spectroscopy, X-ray diffraction(XRD), ultraviolet-visible(UV-vis) absorption spectroscopy, scanning electron microscopy(SEM) and transmission electron microscopy(TEM) were used to characterize the morphology and structure of the nanocomposites. It can be observed that the PANI was uniformly grown along the MWCNTs to form MWCNsT/PANI fiber-like nanocomposites with diameter about 60 nm, and the Ag-Pt binary nanoparticles were decorated onto MWCNTs/PANI with particle sizes around 6.8 nm. Cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) were used to characterize the electrochemical performance of the prepared electrode. The results demonstrated that the obtained MWCNTs/PANI/Ag-Pt electrode displayed a good electrochemical activity and fast electron transport, which has potential applications in biosensors and supercapacitors. 展开更多
关键词 Ag-Pt bimetallic nanoparticles polyaniline multiwalled carbon nanotubes electrochemical properties
下载PDF
Embedding copper nanoparticle-anchored conductive nano-blocks in polyelectrolyte
2
作者 Qingsong Xu Jianguo Tang +6 位作者 Yao Wang Jixian Liu Zhen Huang Linjun Huang Aihua Li Yuan Wang Laurence A.Belfiore 《Particuology》 SCIE EI CAS CSCD 2013年第6期748-752,共5页
Conductive carbon nanotubes (CNTs) or alternatively polyaniline (PANI) nano-blocks was introduced into aqueous solutions of polyvinyl alcohol (PVA) and copper (II) salt, to assist the reduction of copper (II... Conductive carbon nanotubes (CNTs) or alternatively polyaniline (PANI) nano-blocks was introduced into aqueous solutions of polyvinyl alcohol (PVA) and copper (II) salt, to assist the reduction of copper (II) ions and the anchoring of the resulting copper nanoparticles onto the conductive blocks. The mixture solutions of nano-blocks, copper (lI) salts and PVA were spin-coated onto the cathode surface, forming swollen cathode films (SCFs). The copper (II) ions in the film assembled onto the surfaces of the conductive blocks and were then reduced under an appropriate voltage. It is important that the copper nanoparticles grew only on the surfaces of the conductive blocks. PVA which acted as the matrix of the composites played a role in stabilizing the resulting copper nanoparticles. Morphologies of these polymeric composite films were studied by various characterization methods. Moreover, the mechanism of migration of copper (II) ions, the formation of these polymeric composites, and the overall procedure were investigated in detail. 展开更多
关键词 Copper nanoparticles Carbon nanotubes polyaniline Polyelectrolyte
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部