Polyaniline (PAn) was prepared by chemical oxidation polymerization and characterized by FT-IR. PAn/SnO2 materials with different mass fractions of PAn were prepared by mechanical mixing. Compared with single PAn and ...Polyaniline (PAn) was prepared by chemical oxidation polymerization and characterized by FT-IR. PAn/SnO2 materials with different mass fractions of PAn were prepared by mechanical mixing. Compared with single PAn and SnO2, the gas sensitivity of PAn/SnO2 materials to volatile organic compounds (VOCs, methanol, ethanol and acetone) was studied. The possible response mechanism of PAn/SnO2 materials to VOCs was also discussed. It is found that PAn/SnO2 materials have gas sensitivity to VOCs at 90 ℃ among the four operating temperatures (room temperature, 30, 60 and 90 ℃), but PAn and SnO2 have no gas sensitivity at the above temperatures. The sensitivity of PAn/SnO2 materials shows linear increase with the increase of methanol concentration, but saturation with the increase of ethanol and acetone concentrations. PAn/SnO2 materials have high selectivity, fast response-recovery time and low operation temperature to VOCs, but pure PAn and SnO2 do not have.展开更多
The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diff...The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diffractometer,scanning electron microscope and electrochemical techniques.The results show that PAn in the composites is amorphous.PAn formed in the reaction is deposited preferentially on the SnO2 particles,giving a SnO2-PAn composite,in which SnO2 is coated with PAn.SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles,suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.展开更多
Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-n...Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-naphthalenesulfonic acid (a-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.展开更多
The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron...The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and UV-Vis absorption spectroscopy. It was found that the p-n junction p-NiO/n-TiO2 particles were trapped in the polyaniline molecular matrix and the polyaniline was deposited on the surface of the particles to form a kind of flower cluster morphologies. The electrochemical behavior of the polyaniline composites was investigated. The electrochemical reactivity of the polyaniline was influenced by the p-NiO/n-TiO2 particles due to the effect of electron-hole pairs in these p-n junction particles. The reversibility of redox process and current intensity of the polyaniline composites with the changing of potential scan rate were also discussed.展开更多
Two-dimensional(2D) layered materials are widely applied in energy devices including lithium-ion battery and supercapacitor due to their unique properties,such as tunable interlayer structure,numerous active sites,lar...Two-dimensional(2D) layered materials are widely applied in energy devices including lithium-ion battery and supercapacitor due to their unique properties,such as tunable interlayer structure,numerous active sites,large aspect ratio versatile interlayer chemistry.In this work,2D layered tungstate acidlinked polyaniline(TALP) presented a fluid-in-solid structure,which allowed facile exchange of the interlayer fluid from moisture to conventional Li^(+) containing electrolyte.With fast and stable dual ion storage(Li^(+) and PF_(6)^(-)),TALP demonstrates high-rate volumetric capacity(39 mAh cm_(-3) at 2000 mA g^(-1)) and good stability(2000 cycles at 200 mA g^(-1)) within the working potential window of 1.5-4.5 V versus Li^(+)/Li.展开更多
Nanocrystalline titanium dioxide (TiO2) thin films were prepared by using sol-gel through spin- coating method. An assembly of indium tin oxide (ITO)/TiO2/polyaniline (PANI)/Ag was made in a sandwich panel structure. ...Nanocrystalline titanium dioxide (TiO2) thin films were prepared by using sol-gel through spin- coating method. An assembly of indium tin oxide (ITO)/TiO2/polyaniline (PANI)/Ag was made in a sandwich panel structure. The obtained junction shows rectifying behavior. Additionally, the I/V characteristic indicates that a P-N junction at nanocrystalline PANI/TiO2 interface has been created. In this experimental study, we depended only on the ratio between titanium and PANI in the process of preparing sol-gel (PANi/TiO2 at 20% wt). The largest open circuit voltage of 656 mV and short current density of 0.00315 mΑ/cm2 produce 0.0004% power conversion solar cell (η) under simulated solar radiation (50 mW/cm2). The thin films of PANI and titanium oxide (TiO2)/ PANI composites were synthesized by sol-gel technique. Pure TiO2 powder with nanoparticle size of less than 25 nm and PANI were synthesized through chemical oxidative polymerization of aniline monomers. The composite films were characterized by high resolution X-ray diffraction, Fourier transform infrared spectroscopy, field effect scanning electron microscopy, and UV-vis spectroscopy. The results were compared with the corresponding data on pure PANI films. The intensity of diffraction peaks for PANI/TiO2 composites is lower than that for TiO2. The characteristic of the FTIR peaks of pure PANI shifts to a higher wave number in TiO2/PANI composite, which is attributed to the interaction of TiO2 nanoparticles with PANI molecular chains.展开更多
以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti ...以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .展开更多
利用直流电弧等离子体蒸发 -凝聚法制备 Sn O2 纳米粒子 ,研究了 Sn O2 粒子在等离子体焰流中的形成和生长机理 ,探讨了等离子体发生器功率、气体配比和冷却介质对 Sn O2 纳米粒子粒度和纯度的影响 ,制备出了纯度大于98.8%、粒度可控的 ...利用直流电弧等离子体蒸发 -凝聚法制备 Sn O2 纳米粒子 ,研究了 Sn O2 粒子在等离子体焰流中的形成和生长机理 ,探讨了等离子体发生器功率、气体配比和冷却介质对 Sn O2 纳米粒子粒度和纯度的影响 ,制备出了纯度大于98.8%、粒度可控的 Sn O2 纳米粉末 ,为制造高性能 Sn O2 气敏传感器打下了良好的基础。展开更多
基金Project (20070410866) supported by Postdoctoral Science Foundation of ChinaProject(L2006B18) supported by Doctoral Foundation of Hebei Normal University
文摘Polyaniline (PAn) was prepared by chemical oxidation polymerization and characterized by FT-IR. PAn/SnO2 materials with different mass fractions of PAn were prepared by mechanical mixing. Compared with single PAn and SnO2, the gas sensitivity of PAn/SnO2 materials to volatile organic compounds (VOCs, methanol, ethanol and acetone) was studied. The possible response mechanism of PAn/SnO2 materials to VOCs was also discussed. It is found that PAn/SnO2 materials have gas sensitivity to VOCs at 90 ℃ among the four operating temperatures (room temperature, 30, 60 and 90 ℃), but PAn and SnO2 have no gas sensitivity at the above temperatures. The sensitivity of PAn/SnO2 materials shows linear increase with the increase of methanol concentration, but saturation with the increase of ethanol and acetone concentrations. PAn/SnO2 materials have high selectivity, fast response-recovery time and low operation temperature to VOCs, but pure PAn and SnO2 do not have.
基金Project(20376086) supported by the National Natural Science Foundation of ChinaProject(2005037700) supported by the Postdoctoral Science Foundation of China+1 种基金Project(07A058) supported by the Scientific Research Fund of Hunan Provincial Education DepartmentProject(07JJ3014) supported by Hunan Provincial Natural Science Foundation of China
文摘The SnO2-polyaniline(SnO2-PAn) composite was prepared by microemulsion polymerization method using aniline,ammonium peroxodisulfate and SnO2 as starting materials.The SnO2-PAn composite was characterized by X-ray diffractometer,scanning electron microscope and electrochemical techniques.The results show that PAn in the composites is amorphous.PAn formed in the reaction is deposited preferentially on the SnO2 particles,giving a SnO2-PAn composite,in which SnO2 is coated with PAn.SnO2-PAn composite shows a reversible capacity of 657.6 mA·h/g and the capacity loss per cycle is only 0.092% after 80 cycles,suggesting that SnO2-PAn composite is a promising anode material for lithium ion batteries.
基金Funded in Part by the Research Fund of Hubei Provincial Department of Education,China(No.Q20121102)
文摘Polyaniline (PANI) composite nanotubes (90-130 nm in diameter) containing titanium dioxide (TiO2) nanoparticles (about 10 nm in diameter) were synthesized through a self-assembly process in the presence of a-naphthalenesulfonic acid (a-NSA) as the dopant. It was found that PANI-TiO2 composites and PANI nanotubes both behaved with significant photocatalytic activities towards AZO dyes, during 2 h photocatalytic processes under natural light, the degradation ratio was 94.2% and 97.2% respectively (methyl orange and orange II). The morphology of such products was characterized by SEM. The specific surface area of such composite nanotubes was 14.7 m2/g compared to normal polyaniline which was 0.27 m2/g. IR and X-ray diffraction characterizations showed that the chemical chain of the composite nanotubes was identical to that of the doped PANI. It may provide a new way for photodegradation of organic contaminants by using conjugated polymer with dimensional structure.
基金Supported by the National Natural Science Foundation of China(No.51073064)the Science Foundation of Anhui Province, China(No.090414192)
文摘The p-NiO/n-TiO2/polyaniline composites were synthesized via in situ polymerization of aniline. The structure and morphology of the composites were characterized by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), Fourier transform infrared spectroscopy(FTIR) and UV-Vis absorption spectroscopy. It was found that the p-n junction p-NiO/n-TiO2 particles were trapped in the polyaniline molecular matrix and the polyaniline was deposited on the surface of the particles to form a kind of flower cluster morphologies. The electrochemical behavior of the polyaniline composites was investigated. The electrochemical reactivity of the polyaniline was influenced by the p-NiO/n-TiO2 particles due to the effect of electron-hole pairs in these p-n junction particles. The reversibility of redox process and current intensity of the polyaniline composites with the changing of potential scan rate were also discussed.
基金financially supported by the Australian Research Council Discovery Projects Discovery Project(DP190101008)Future Fellowship(FT190100058)+2 种基金ARC ITRP(IH180100020)the UNSW Scientia Program,and the UNSW-SJTU joint grantpartially supported by funding from the UNSW Digital Grid Futures Institute,UNSW,Sydney,under a cross disciplinary fund scheme。
文摘Two-dimensional(2D) layered materials are widely applied in energy devices including lithium-ion battery and supercapacitor due to their unique properties,such as tunable interlayer structure,numerous active sites,large aspect ratio versatile interlayer chemistry.In this work,2D layered tungstate acidlinked polyaniline(TALP) presented a fluid-in-solid structure,which allowed facile exchange of the interlayer fluid from moisture to conventional Li^(+) containing electrolyte.With fast and stable dual ion storage(Li^(+) and PF_(6)^(-)),TALP demonstrates high-rate volumetric capacity(39 mAh cm_(-3) at 2000 mA g^(-1)) and good stability(2000 cycles at 200 mA g^(-1)) within the working potential window of 1.5-4.5 V versus Li^(+)/Li.
文摘Nanocrystalline titanium dioxide (TiO2) thin films were prepared by using sol-gel through spin- coating method. An assembly of indium tin oxide (ITO)/TiO2/polyaniline (PANI)/Ag was made in a sandwich panel structure. The obtained junction shows rectifying behavior. Additionally, the I/V characteristic indicates that a P-N junction at nanocrystalline PANI/TiO2 interface has been created. In this experimental study, we depended only on the ratio between titanium and PANI in the process of preparing sol-gel (PANi/TiO2 at 20% wt). The largest open circuit voltage of 656 mV and short current density of 0.00315 mΑ/cm2 produce 0.0004% power conversion solar cell (η) under simulated solar radiation (50 mW/cm2). The thin films of PANI and titanium oxide (TiO2)/ PANI composites were synthesized by sol-gel technique. Pure TiO2 powder with nanoparticle size of less than 25 nm and PANI were synthesized through chemical oxidative polymerization of aniline monomers. The composite films were characterized by high resolution X-ray diffraction, Fourier transform infrared spectroscopy, field effect scanning electron microscopy, and UV-vis spectroscopy. The results were compared with the corresponding data on pure PANI films. The intensity of diffraction peaks for PANI/TiO2 composites is lower than that for TiO2. The characteristic of the FTIR peaks of pure PANI shifts to a higher wave number in TiO2/PANI composite, which is attributed to the interaction of TiO2 nanoparticles with PANI molecular chains.
文摘以 Sn Cl4· Ti( OBu) 4、氨水、乙醇为原料 ,采用活性层包覆法 ,制备出 Ti O2 / Sn O2 复合光催化剂 ,并用IR、XRD、TEM和 BET等手段对样品进行了表征 .研究其对有机磷农药敌敌畏的光催化降解效果 ,与单一半导体催化剂 Sn O2 、Ti O2 做了简单对比 .结果表明 :所制 Ti O2 / Sn O2 样品为包覆型结构 ,由锐钛矿型 Ti O2 金红石型 Sn O2 组成 ,与 Sn O2 及 Ti O2 晶体粉末相比所制 Ti O2 / Sn O2 包覆粒子光催化活性得到明显提高 .
文摘利用直流电弧等离子体蒸发 -凝聚法制备 Sn O2 纳米粒子 ,研究了 Sn O2 粒子在等离子体焰流中的形成和生长机理 ,探讨了等离子体发生器功率、气体配比和冷却介质对 Sn O2 纳米粒子粒度和纯度的影响 ,制备出了纯度大于98.8%、粒度可控的 Sn O2 纳米粉末 ,为制造高性能 Sn O2 气敏传感器打下了良好的基础。