期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Review on current development of polybenzimidazole membrane for lithium battery
1
作者 Yonggui Deng Arshad Hussain +3 位作者 Waseem Raza Xingke Cai Dongqing Liu Jun Shen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期579-608,共30页
With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the k... With the rapid development of portable technology,lithium batteries have emerged as potential candidates for high-performance energy storage systems owing to their high energy density and cycling stability.Among the key components of a lithium battery system,the separator plays a critical role as it directly influences the battery performance benchmark(cycling performance and safety).However,traditional polyolefin separators(polypropylene/polyethylene)are unable to meet the demands of highperformance and safer battery systems due to their poor electrolyte compatibility,thermal runaways,and ultimate growth of dendrites.In contrast,membranes fabricated using polybenzimidazole(PBI)exhibit excellent electrolyte wettability and outstanding thermal dimensional stability,thus holding great potential as separators for high-performance and high-safety batteries.In this paper,we present a comprehensive review of the general requirements for separators,synthesis technology for separators,and research trends focusing PBI membranes in lithium batteries to alleviate the current commercial challenges faced by conventional polyolefin separators.In addition,we discuss the future development direction for PBI battery separators by considering various factors such as production cost,ecological footprint,preparation technology,and battery component compatibility.By exploring these perspectives,we aim to promote the continued application and exploration of PBI-based materials to advance lithium battery technology. 展开更多
关键词 Lithium batteries SEPARATORS Porous separators Polybenzimidazole membrane
下载PDF
Modified silicon carbide whisker reinforced polybenzimidazole used for high temperature proton exchange membrane 被引量:2
2
作者 Yangben Cai Zhouying Yue +1 位作者 Qianlu Jiang Shiai Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第3期820-825,共6页
Polybenzimidazole containing ether bond(OPBI) was reinforced with silicon carbide whisker(m Si C) modified by 3-aminopropyltriethoxysilane(KH550), and then doped with phosphoric acid(PA) to obtain OPBI/m Si C/... Polybenzimidazole containing ether bond(OPBI) was reinforced with silicon carbide whisker(m Si C) modified by 3-aminopropyltriethoxysilane(KH550), and then doped with phosphoric acid(PA) to obtain OPBI/m Si C/PA membranes. These OPBI/m Si C/PA membranes have excellent mechanical strength and oxidative stability and can be used for high temperature proton exchange membrane(HT-PEM). The tensile strength of OPBI/m Si C/PA membranes ranges from 27.3 to 36.8 MPa, and it increases at first and then decreases with the increase of m Si C content. The high m Si C content and PA doping level contribute to improving the proton conductivity of membranes. The proton conductivity of PBI/m Si C-10/PA membrane is 27.1 m S cm-1 at 170℃ without humidity, with an increase of 55.7% compared with that of OPBI/PA membrane. These excellent properties make OPBI/m Si C/PA membranes promising membrane materials for HT-PEM applications. 展开更多
关键词 Polybenzimidazole Silicon carbide whisker Phosphoric acid doping Proton exchange membrane Proton conductivity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部