Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile...Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.展开更多
The effect of isobutylene-isoprene rubber (IIR) on the crystallizing behavior of isotactic polypropylene (IPP) as well as the morphology of the blends in relation with its properties have been studied by DSC, WAXD, po...The effect of isobutylene-isoprene rubber (IIR) on the crystallizing behavior of isotactic polypropylene (IPP) as well as the morphology of the blends in relation with its properties have been studied by DSC, WAXD, polarized light microscope, SEM and mechanical properties test. The experimental results show that IIR has slight influence on melting point, crystallinity, crystallization rate of IPP. It seems certain that IIR has not entered into IPP phase in melt state. IIR has retarding action on the growth of IPP crystal and is an effective nucleating agent of IPP spherulites. The impact strength of the blend increases rapidly with IIR content more than 30 parts; the tensile strength of the blend, however, decreases as IIR content increases. The temperature and time of alter heat-treatment also have great influence on the impact strength of the blend. The impact strength of IPP/IIR (100/20) heat-treated at about 130℃ for 2h is 5 times as high as that of the untreated blend.展开更多
Ethyl cellulose (EC), taken as a thermotropic liquid crystalline polymer, was blended with polypropylene (PP), followed by injection molding. Fibre-forming of EC in the PP matrix is analyzed,based on the rheological d...Ethyl cellulose (EC), taken as a thermotropic liquid crystalline polymer, was blended with polypropylene (PP), followed by injection molding. Fibre-forming of EC in the PP matrix is analyzed,based on the rheological data,dynamic mechanical analysis and fracture micrographs of EC/PP blends. The addition of maleated PP, for the modification of the interphasial interaction between the PP matrix and the EC fibrils, did not impair the fiber formation substantially.展开更多
Three-dimensional (3D) printing is a novel process used to manufacture bone tissue engineered scaffolds. This process allows for easy control of the architecture at the micro structure. However, the scaffold propert...Three-dimensional (3D) printing is a novel process used to manufacture bone tissue engineered scaffolds. This process allows for easy control of the architecture at the micro structure. However, the scaffold properties are typically limited in terms of cellular activity at the scaffold surface due to the printed materials properties. In this study, we developed a polycaprolactone (PCL) blended with polyethylene glycol (PEG) 3D printed scaffold using a rapid prototyping system. The manufactured scaffolds were then washed out to form small pores on the surface in order to improve the scaffolds hydrophilicity. We analyzed the resultant material by using Scanning Electron Microscopy (SEM), water absorption, water contact angle, in vitro WST-1, and the Bradford assay. Additionally, cells incubated on the fabricated scaffolds were visualized by Confocal Laser Scanning Microscopy (CLSM). The developed scaffolds exhibited small pores on the strand surface which served to increase hydrophilicity as well as improve cellular proliferation and increase total protein content. Our findings suggest that the presence of small pores on the scaffolds can be used as an effective tool for improving implant cellular interaction. This research indicates that these modified scaffolds can be considered useful for bone tissue engineering applications to improve human health.展开更多
文摘Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.
文摘The effect of isobutylene-isoprene rubber (IIR) on the crystallizing behavior of isotactic polypropylene (IPP) as well as the morphology of the blends in relation with its properties have been studied by DSC, WAXD, polarized light microscope, SEM and mechanical properties test. The experimental results show that IIR has slight influence on melting point, crystallinity, crystallization rate of IPP. It seems certain that IIR has not entered into IPP phase in melt state. IIR has retarding action on the growth of IPP crystal and is an effective nucleating agent of IPP spherulites. The impact strength of the blend increases rapidly with IIR content more than 30 parts; the tensile strength of the blend, however, decreases as IIR content increases. The temperature and time of alter heat-treatment also have great influence on the impact strength of the blend. The impact strength of IPP/IIR (100/20) heat-treated at about 130℃ for 2h is 5 times as high as that of the untreated blend.
基金This work is supported by The National Natural Science Foundation of China
文摘Ethyl cellulose (EC), taken as a thermotropic liquid crystalline polymer, was blended with polypropylene (PP), followed by injection molding. Fibre-forming of EC in the PP matrix is analyzed,based on the rheological data,dynamic mechanical analysis and fracture micrographs of EC/PP blends. The addition of maleated PP, for the modification of the interphasial interaction between the PP matrix and the EC fibrils, did not impair the fiber formation substantially.
文摘Three-dimensional (3D) printing is a novel process used to manufacture bone tissue engineered scaffolds. This process allows for easy control of the architecture at the micro structure. However, the scaffold properties are typically limited in terms of cellular activity at the scaffold surface due to the printed materials properties. In this study, we developed a polycaprolactone (PCL) blended with polyethylene glycol (PEG) 3D printed scaffold using a rapid prototyping system. The manufactured scaffolds were then washed out to form small pores on the surface in order to improve the scaffolds hydrophilicity. We analyzed the resultant material by using Scanning Electron Microscopy (SEM), water absorption, water contact angle, in vitro WST-1, and the Bradford assay. Additionally, cells incubated on the fabricated scaffolds were visualized by Confocal Laser Scanning Microscopy (CLSM). The developed scaffolds exhibited small pores on the strand surface which served to increase hydrophilicity as well as improve cellular proliferation and increase total protein content. Our findings suggest that the presence of small pores on the scaffolds can be used as an effective tool for improving implant cellular interaction. This research indicates that these modified scaffolds can be considered useful for bone tissue engineering applications to improve human health.