In this paper, a new bulge-forming technology is described to manufacture a polycarbonate semisphere shell. Some experiments have been done, and the experimental results show that this technique is feasible to form po...In this paper, a new bulge-forming technology is described to manufacture a polycarbonate semisphere shell. Some experiments have been done, and the experimental results show that this technique is feasible to form polycarbonate part. But the wall thickness distribution of the bulged specimen by this method is not so even.展开更多
In this research, recycled-polyethylene terephthalate (PET) and polycarbonate (RPET/PC) blends fabricated by vented barrel injection molding were presented to better understand the effect of devolatilization during mo...In this research, recycled-polyethylene terephthalate (PET) and polycarbonate (RPET/PC) blends fabricated by vented barrel injection molding were presented to better understand the effect of devolatilization during molding process. The effect of dried pellets, non-dried pellets, using an opened-vented hole, and using a closed-vented hole on the miscibility, morphology, thermal properties and mechanical properties of RPET/PC blends was investigated. The results indicated that no drying decreases dispersion, thermal properties, and mechanical properties of RPET/PC blends due to hydrolysis degradation of recycled-PET during the injection molding process. Using the venting system with non-dried RPET/PC blends partially improves dispersion, thermal properties and molecular weight of RPET/PC blends processed without drying, giving results that are similar to those processed with drying. Regarding the flexural properties, using the venting system without drying prevents the flexural properties from decreasing in RPET/PC blends, if the amount of RPET is less than 75 wt%. When the content of RPET is over 75 wt%, using the venting system does not eliminate the decrease in flexural properties of RPET/PC blends. When the venting system is applied to non-dried RPET, despite hydrolysis degradation of RPET not being completely eliminated, the damaging effects are nonetheless reduced compared with those samples processed without the venting system. As a result, vented barrel injection molding hardly prevents non-dried RPET/PC blends from having reduced flexural properties when the content of RPET is greater than 75 wt%.展开更多
采用熔融接技方法制备HDPE g MAH作为相容剂,研究了接枝单体、引发剂对接枝率和熔体流动速率的影响;并与相容剂EVA对HDPE/PC共混合金体系的增容效果进行了比较。结果表明:HDPE g MAH相容剂的增容效果较好,它的加入使HDPE PC共混合金... 采用熔融接技方法制备HDPE g MAH作为相容剂,研究了接枝单体、引发剂对接枝率和熔体流动速率的影响;并与相容剂EVA对HDPE/PC共混合金体系的增容效果进行了比较。结果表明:HDPE g MAH相容剂的增容效果较好,它的加入使HDPE PC共混合金的综合力学性能得到较大提高。展开更多
文摘In this paper, a new bulge-forming technology is described to manufacture a polycarbonate semisphere shell. Some experiments have been done, and the experimental results show that this technique is feasible to form polycarbonate part. But the wall thickness distribution of the bulged specimen by this method is not so even.
文摘In this research, recycled-polyethylene terephthalate (PET) and polycarbonate (RPET/PC) blends fabricated by vented barrel injection molding were presented to better understand the effect of devolatilization during molding process. The effect of dried pellets, non-dried pellets, using an opened-vented hole, and using a closed-vented hole on the miscibility, morphology, thermal properties and mechanical properties of RPET/PC blends was investigated. The results indicated that no drying decreases dispersion, thermal properties, and mechanical properties of RPET/PC blends due to hydrolysis degradation of recycled-PET during the injection molding process. Using the venting system with non-dried RPET/PC blends partially improves dispersion, thermal properties and molecular weight of RPET/PC blends processed without drying, giving results that are similar to those processed with drying. Regarding the flexural properties, using the venting system without drying prevents the flexural properties from decreasing in RPET/PC blends, if the amount of RPET is less than 75 wt%. When the content of RPET is over 75 wt%, using the venting system does not eliminate the decrease in flexural properties of RPET/PC blends. When the venting system is applied to non-dried RPET, despite hydrolysis degradation of RPET not being completely eliminated, the damaging effects are nonetheless reduced compared with those samples processed without the venting system. As a result, vented barrel injection molding hardly prevents non-dried RPET/PC blends from having reduced flexural properties when the content of RPET is greater than 75 wt%.