Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacr...Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.展开更多
Effective utilization of hot electrons generated from the decay of surface plasmon resonance in metal nanoparticles is conductive to improve solar water splitting efficiency.Herein,Ag nanoparticles and reduced graphen...Effective utilization of hot electrons generated from the decay of surface plasmon resonance in metal nanoparticles is conductive to improve solar water splitting efficiency.Herein,Ag nanoparticles and reduced graphene oxide(rGO)co-decorated hierarchical TiO2 nanoring/nanotube arrays(TiO2 R/T)were facilely fabricated by using two-step electrochemical anodization,electrodeposition,and photoreduction methods.Comparative studies were conducted to elucidate the effects of rGO and Ag on the morphology,photoresponse,charge transfer,and photoelectric properties of TiO2.Firstly,scanning electron microscope images confirm that the Ag nanoparticles adhered on TiO2 R/T and TiO2 R/T-rGO have similar diameter of 20 nm except for TiO2 R-rGO/T.Then,the UV-Vis DRS and scatter spectra reveal that the optical property of the Ag-TiO2 R/T-rGO ternary composite is enhanced,ascribing to the visible light absorption of plasmonic Ag nanoparticles and the weakening effect of rGO on light scattering.Meanwhile,intensity-modulated photocurrent spectroscopy and photoluminescence spectra demonstrate that rGO can promote the hot electrons transfer from Ag nanoparticles to Ti substrate,reducing the photogenerated electron-hole recombination.Finally,Ag-TiO2 R/T-rGO photoanode exhibits high photocurrent density(0.98 mA cm?2)and photovoltage(0.90 V),and the stable H2 evolution rate of 413μL h?1 cm?2 within 1.5 h under AM 1.5 which exceeds by 1.30 times than that of pristine TiO2 R/T.In line with the above results,this work provides a reliable route synergizing rGO with plasmonic metal nanoparticles for photocatalysis,in which,rGO presents a broad absorption spectrum and effective photogenerated electrons transfer.展开更多
Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting press...Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting pressure control measures based on field survey conducted in 23 high-rise buildings in Suqian, China and laboratory tests. Results showed that per capita water consumption (PCWC) exceeding water consumption norms is common in these buildings. The hourly water consumption variation law is quite different among different types of buildings. These differences should be considered in designing building water supply systems to lower water and energy consumption. On the basis of correlation analysis, the order of factors influencing the PCWC follows average tap water pressure, percapita building area, and building age, suggesting pressure management in high-rise buildings is a key water-saving measure. Field tests of outflow characteristics under different water pressures indicated that over-pressure outflow (OPO) is a common cause of water wastage in buildings, however, no branch pipe pressure control measures were found in all the surveyed buildings. Laboratory tests showed that branch pipe pressure-reducing measures can lower water consumption and improve the comfortability of use as well. Therefore, in addition to applying high efficiency water-saving devices, we strongly recommend that branch pipe pressure-reducing measures should be strictly implemented in designing new building water supply systems and reconstruction of existing old building water supply systems, thereby, promoting water, energy saving and development of green building.展开更多
基金supported by the National Natural Science Foundation of China(Project Nos.51774062 and 52274032)Scientific and Technological Key Research Program of Chongqing Municipal Education Commission(KJZD-K201901502)+1 种基金General Project of Chongqing Natural Science Foundation(CSTB2022NSCQMSX0349)Science and Technology Research Program of Chongqing Municipal Education Commission(KJQN202313101)。
文摘Two allyldimethylalkyl quaternary ammonium salt(AQAS)monomers,N,N-dimethylallylphenylpropylammonium bromide(AQAS1)and N,N-dimethylallylnonylammonium bromide(AQAS2),were synthesized and used to prepare modified polyacrylamide materials.Two new drag reducers were synthesized from acrylamide(AM),sodium acrylate(Na AA)and a cationic modified monomer(AQAS1 or AQAS2)via aqueous solution polymerization,and the copolymers were named P(AM/Na AA/AQAS1)and P(AM/Na AA/AQAS2),respectively.The structures of the drag reduction agents were confirmed by IR and1H NMR spectroscopies.The molecular weight(Mw)of P(AM/Na AA/AQAS1)was 1.79×10^(6)g/mol.When the copolymer concentration was 1000 mg/L and the flow rate was 45 L/min,in fresh water the highest drag reduction rate was 75.8%,in 10,000 mg/L Na Cl solution the drag reduction rate decreased to 72.9%.The molecular weight of P(AM/Na AA/AQAS2)was 3.17×10^(6)g/mol.When the copolymer concentration was500 mg/L and the flow rate was 45 L/min,the drag reduction rate reached 75.2%,and in 10,000 mg/L Na Cl solution the drag reduction rate was 73.3%,decreased by approximately 1.9%.The drag reduction rate for partially hydrolyzed polyacrylamide(HPAM)was also investigated,and the results showed that the drag reduction rates for 500 and 1000 mg/L HPAM solutions were merely 43.2%and 49.0%in brine,respectively.Compared with HPAM,both of the above copolymers presented better drag reduction capacities.
基金the National Natural Science Foundation of China(Grant No.51776009)for the financial support.
文摘Effective utilization of hot electrons generated from the decay of surface plasmon resonance in metal nanoparticles is conductive to improve solar water splitting efficiency.Herein,Ag nanoparticles and reduced graphene oxide(rGO)co-decorated hierarchical TiO2 nanoring/nanotube arrays(TiO2 R/T)were facilely fabricated by using two-step electrochemical anodization,electrodeposition,and photoreduction methods.Comparative studies were conducted to elucidate the effects of rGO and Ag on the morphology,photoresponse,charge transfer,and photoelectric properties of TiO2.Firstly,scanning electron microscope images confirm that the Ag nanoparticles adhered on TiO2 R/T and TiO2 R/T-rGO have similar diameter of 20 nm except for TiO2 R-rGO/T.Then,the UV-Vis DRS and scatter spectra reveal that the optical property of the Ag-TiO2 R/T-rGO ternary composite is enhanced,ascribing to the visible light absorption of plasmonic Ag nanoparticles and the weakening effect of rGO on light scattering.Meanwhile,intensity-modulated photocurrent spectroscopy and photoluminescence spectra demonstrate that rGO can promote the hot electrons transfer from Ag nanoparticles to Ti substrate,reducing the photogenerated electron-hole recombination.Finally,Ag-TiO2 R/T-rGO photoanode exhibits high photocurrent density(0.98 mA cm?2)and photovoltage(0.90 V),and the stable H2 evolution rate of 413μL h?1 cm?2 within 1.5 h under AM 1.5 which exceeds by 1.30 times than that of pristine TiO2 R/T.In line with the above results,this work provides a reliable route synergizing rGO with plasmonic metal nanoparticles for photocatalysis,in which,rGO presents a broad absorption spectrum and effective photogenerated electrons transfer.
文摘Facing the contradiction of water scarcity and water wastage in most cities of China, this study aims at probing into the factors influencing water-use efficiency and assessing water-saving potential by adopting pressure control measures based on field survey conducted in 23 high-rise buildings in Suqian, China and laboratory tests. Results showed that per capita water consumption (PCWC) exceeding water consumption norms is common in these buildings. The hourly water consumption variation law is quite different among different types of buildings. These differences should be considered in designing building water supply systems to lower water and energy consumption. On the basis of correlation analysis, the order of factors influencing the PCWC follows average tap water pressure, percapita building area, and building age, suggesting pressure management in high-rise buildings is a key water-saving measure. Field tests of outflow characteristics under different water pressures indicated that over-pressure outflow (OPO) is a common cause of water wastage in buildings, however, no branch pipe pressure control measures were found in all the surveyed buildings. Laboratory tests showed that branch pipe pressure-reducing measures can lower water consumption and improve the comfortability of use as well. Therefore, in addition to applying high efficiency water-saving devices, we strongly recommend that branch pipe pressure-reducing measures should be strictly implemented in designing new building water supply systems and reconstruction of existing old building water supply systems, thereby, promoting water, energy saving and development of green building.