The electric-field tunability of dielectric constant (ε-E) in Sr1-xMnxTiO3 films (x = 0, 0.005, 0.010, 0.020 and 0.030) prepared by the metal organic decomposition method on Pt/Ti/SiO2/Si substrates is studied in...The electric-field tunability of dielectric constant (ε-E) in Sr1-xMnxTiO3 films (x = 0, 0.005, 0.010, 0.020 and 0.030) prepared by the metal organic decomposition method on Pt/Ti/SiO2/Si substrates is studied in the frequency range from 100Hz to 1MHz with different Mn contents at different temperatures. The frequencyindependent tunability increases strongly with decreasing the temperature from 300 K to 150K. The tunability (-31%) in thin films (x = 0.005) at 150K is obtained and the temperature for the same tunability in ceramics is about 60 K lower than the present one. This tunability is comparable with that in one of ferroelectric Sr1-1.sxBixTiO3 thin films. Similarly, the well-defined P(E) hysteresis 10013 and 2Pr (1.2 μC/cm^2) can be obtained at 300 K in Sr1-xMnxTiO3 films with z = 0.005. Both the existence of electric dipole or poled micro domain introduced by the doped Mn2+ located in the off-center position at Sr sites and the strain between the thin film and the substrate are the origins of the tunable and polar behavior in Sr1-xMnxTiO3 films.展开更多
The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3O7-δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain ...The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3O7-δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain 0 and the irreversible strain εirr. By introducing the applied strain, a modified grain boundaries (GBs) in the REBCO film is developed. lattice model combining the strain and misorientation of A good agreement of the calculation on the lattice model with the experimental data shows that the lattice model is able to well describe the reversible effect of axial strain on the critical current of the REBCO film, and provides a good understanding of the mechanism of the reversible effect of the strain. Moreover, the effects of the crystallographic texture of the REBCO film and the residual strain εr on the variation of the critical current with the applied strain are extensively investigated. Furthermore by using the developed lattice model, the irreversible strain εirr of the REBCO film can be theoretically determined by comparing the calculation of the critical current-strain curve with the experimental data.展开更多
The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathway...The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 51225201,61271078,and 51102133the National Basic Research Program of China under Grant No 2015CB921201+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Fundamental Research Funds for the Central Universities
文摘The electric-field tunability of dielectric constant (ε-E) in Sr1-xMnxTiO3 films (x = 0, 0.005, 0.010, 0.020 and 0.030) prepared by the metal organic decomposition method on Pt/Ti/SiO2/Si substrates is studied in the frequency range from 100Hz to 1MHz with different Mn contents at different temperatures. The frequencyindependent tunability increases strongly with decreasing the temperature from 300 K to 150K. The tunability (-31%) in thin films (x = 0.005) at 150K is obtained and the temperature for the same tunability in ceramics is about 60 K lower than the present one. This tunability is comparable with that in one of ferroelectric Sr1-1.sxBixTiO3 thin films. Similarly, the well-defined P(E) hysteresis 10013 and 2Pr (1.2 μC/cm^2) can be obtained at 300 K in Sr1-xMnxTiO3 films with z = 0.005. Both the existence of electric dipole or poled micro domain introduced by the doped Mn2+ located in the off-center position at Sr sites and the strain between the thin film and the substrate are the origins of the tunable and polar behavior in Sr1-xMnxTiO3 films.
基金Supported by the National Natural Science Foundation of China under Grant No 11372096the Research Fund for the Doctoral Program of Higher Education of China
文摘The strain effect on the critical current is one of the most important properties for polycrystalline YBa2 Cu3O7-δ (REBCO, RE: rare earth) films, in which the reversible effect is intrinsic in the range of strain 0 and the irreversible strain εirr. By introducing the applied strain, a modified grain boundaries (GBs) in the REBCO film is developed. lattice model combining the strain and misorientation of A good agreement of the calculation on the lattice model with the experimental data shows that the lattice model is able to well describe the reversible effect of axial strain on the critical current of the REBCO film, and provides a good understanding of the mechanism of the reversible effect of the strain. Moreover, the effects of the crystallographic texture of the REBCO film and the residual strain εr on the variation of the critical current with the applied strain are extensively investigated. Furthermore by using the developed lattice model, the irreversible strain εirr of the REBCO film can be theoretically determined by comparing the calculation of the critical current-strain curve with the experimental data.
基金supported by the Chinese Academy of Sciencesthe State Key Project of Fundamental Research of Chinathe Natural Science Foundation of Ningbo,China
文摘The leakage current behaviours of polycrystalline BiFeO3 thin films are investigated by using both conductive atomic force microscopy and current-voltage characteristic measurements. The local charge transport pathways are found to be located mainly at the grain boundaries of the films. The leakage current density can be tuned by changing the post-annealing temperature, the annealing time, the bias voltage and the light illumination, which can be used to improve the performances of the ferroelectric devices based on the BiFeOa films. A possible leakage mechanism is proposed to interpret the charge transports in the polycrystalline BiFeO3 films.