Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesi...Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10^-4W/m·K^2 to 8.08×10^-4W/m·K^2 at 612℃.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10^-4W/m·K^2 at 537℃.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612℃ is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure.展开更多
SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especia...SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and electrical conductivity. We firstly attempted to explain and verify the difference in the electrical conductivity as a function of temperature between p-type crystalline and polycrystalline SnSe by considering the grain boundary effects in the polycrystalline samples. On the basis of 2% Na doping to optimize the carrier concentration, the carrier mobility is improved by further introducing In, leading to enhanced carrier mobility from 3 to 9 cm2·V^(-1)·s^(-1) in polycrystalline SnSe. Moreover, In doping introduces extra resonant levels in SnSe, which increases the density of states near Fermi level and leads to an enhanced band effective mass. Large Seebeck coefficient of ~205 l V·K^(-1) at 300 K and maximum power factor of ~7.5 l W·cm^(-1)·K^(-2) at 773 K can be obtained in the Sn_(0.975)Na_(0.02)In_(0.005) Se sample,leading to a competitively high dimensionless figure of merit(ZT) value exceeding 1.1 at 773 K.展开更多
Thermoelectric(TE)performance of polycrystalline stannous selenide(SnSe)has been remarkably promoted by the strategies of energy band,defect engineering,etc.However,due to the intrinsic insufficiencies of phonon scatt...Thermoelectric(TE)performance of polycrystalline stannous selenide(SnSe)has been remarkably promoted by the strategies of energy band,defect engineering,etc.However,due to the intrinsic insufficiencies of phonon scattering and carrier concentration,it is hard to simultaneously realize the regulations of electrical and thermal transport properties by one simple approach.Herein,we develop Cu and Ce co-doping strategy that can not only greatly reduce lattice thermal conductivity but also improve the electrical transport properties.In this strategy,the incorporated Cu and Ce atoms could induce high-density SnSe_(2) nanoprecipitation arrays on the surface of SnSe microplate,and produce dopant atom point defects and dislocations in its interior,which form multi-scale phonon scattering synergy,thereby presenting an ultralow thermal conductivity of 0.275 W·m^(−1)·K^(−1) at 786 K.Meanwhile,density functional theory(DFT)calculations,carrier concentration,and mobility testing reveal that more extra hole carriers and lower conducting carrier scattering generate after Cu and Ce co-doping,thereby improving the electrical conductivity.The co-doped Sn_(0.98)Cu_(0.01)Ce_(0.01)Se bulk exhibits an excellent ZT value up to~1.2 at 786 K and a high average ZT value of 0.67 from 300 to 786 K.This work provides a simple and convenient strategy of enhancing the TE performance of polycrystalline SnSe.展开更多
In this study,large-scale Te-doped polycrystalline SnSe nanopowders were synthesized by a facile hydrothermal approach and the effect of Te doping on the thermoelectric properties of SnSe was fully investigated.It is ...In this study,large-scale Te-doped polycrystalline SnSe nanopowders were synthesized by a facile hydrothermal approach and the effect of Te doping on the thermoelectric properties of SnSe was fully investigated.It is found that the carrier concentration increases due to the reduction of band gap by alloying with Te,which contributes to significant enhancement of electrical conductivity especially at room temperature.Combined with the moderated Seebeck coefficient,a high power factor of 4.59μW cm 1 K 2 is obtained at 773 K.Furthermore,the lattice the rmal conductivity is greatly reduced upon Te substitution owing to the atomic point defect scattering.Benefiting from the synergistically optimized both electrical-and thermal-transport properties by Te-doping,thermoelectric performance of polycrystalline SnSe is enhanced in the whole temperature range with a maximum ZT of-0.79 at a relatively low temperature(773 K) for SnSe0.85Te0.15.This study provides a low-cost and simple lowtemperature method to mass production of SnSe with high thermoelectric performance for practical applications.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51572049,51562005,and 51772056)the Natural Science Foundation of Guangxi Zhuang Automomous Region,China(Grant Nos.2015GXNSFFA139002 and 2016GXNSFBA380152)the Open Fund of Key Laboratory of Cryogenics,Technical Institute of Physics and Chemistry,Chinese Academy of Sciences(Grant No.CRYO201703)
文摘Thermoelectric selenides have attracted more and more attentions recently.Herein,p-type Sn Se polycrystalline bulk materials with good thermoelectric properties are presented.By using the SnSe2 nanostructures synthesized via a wetchemistry route as the precursor,polycrystalline Sn Se bulk materials were successfully obtained by a combined heattreating process under reducing atmosphere and following spark plasma sintering procedure.As a reference,the Sn Se nanostructures synthesized via a wet-chemistry route were also fabricated into polycrystalline bulk materials through the same process.The thermoelectric properties of the Sn Se polycrystalline transformed from SnSe2 nanostructures indicate that the increasing of heattreating temperature could effectively decrease the electrical resistivity,whereas the decrease in Seebeck coefficient is nearly invisible.As a result,the maximum power factor is enhanced from 5.06×10^-4W/m·K^2 to 8.08×10^-4W/m·K^2 at 612℃.On the other hand,the reference sample,which was obtained by using Sn Se nanostructures as the precursor,displays very poor power factor of only 1.30×10^-4W/m·K^2 at 537℃.The x-ray diffraction(XRD),scanning electron microscope(SEM),x-ray fluorescence(XRF),and Hall effect characterizations suggest that the anisotropic crystal growth and existing Sn vacancy might be responsible for the enhanced electrical transport in the polycrystalline Sn Se prepared by using SnSe2 precursor.On the other hand,the impact of heat-treating temperature on thermal conductivity is not obvious.Owing to the boosting of power factor,a high z T value of 1.07 at 612℃ is achieved.This study provides a new method to synthesize polycrystalline Sn Se and pave a way to improve the thermoelectric properties of polycrystalline bulk materials with similar layered structure.
基金financially supported by the National Key Research and Development Program of China (Nos.2018YFA0702100 and 2018YFB0703600)the National Natural Science Foundation of China (Nos.51772012 and 51671015)+3 种基金Beijing Natural Science Foundation (No.JQ18004)National Postdoctoral Program for Innovative Talents (No.BX20200028)the support from the National Science Fund for Distinguished Young Scholars (No.51925101)the high performance computing (HPC) resources at Beihang University。
文摘SnSe crystals have been discovered as one of the most efficient thermoelectric materials due to their remarkable thermal and electrical transports. But the polycrystalline SnSe possesses much lower performance especially for the low carrier mobility and electrical conductivity. We firstly attempted to explain and verify the difference in the electrical conductivity as a function of temperature between p-type crystalline and polycrystalline SnSe by considering the grain boundary effects in the polycrystalline samples. On the basis of 2% Na doping to optimize the carrier concentration, the carrier mobility is improved by further introducing In, leading to enhanced carrier mobility from 3 to 9 cm2·V^(-1)·s^(-1) in polycrystalline SnSe. Moreover, In doping introduces extra resonant levels in SnSe, which increases the density of states near Fermi level and leads to an enhanced band effective mass. Large Seebeck coefficient of ~205 l V·K^(-1) at 300 K and maximum power factor of ~7.5 l W·cm^(-1)·K^(-2) at 773 K can be obtained in the Sn_(0.975)Na_(0.02)In_(0.005) Se sample,leading to a competitively high dimensionless figure of merit(ZT) value exceeding 1.1 at 773 K.
基金support of the National Natural Science Foundation of China(Grant Nos.51702193 and 51502165)the Natural Science Basic Research Program of Shaanxi(Grant No.2022JM-202)+3 种基金the Shaanxi Provincial Education Department Serves Local Scientific Research Plan(Grant No.20JC008)the General Project in Industrial Area of Shaanxi Province(Grant No.2020GY281)the Natural Science Foundation of Shaanxi Provincial Department of Education(Grant No.20JK0525)the Scientific Research Fund of Shaanxi University of Science&Technology(Grant Nos.BJ16-20 and BJ16-21).
文摘Thermoelectric(TE)performance of polycrystalline stannous selenide(SnSe)has been remarkably promoted by the strategies of energy band,defect engineering,etc.However,due to the intrinsic insufficiencies of phonon scattering and carrier concentration,it is hard to simultaneously realize the regulations of electrical and thermal transport properties by one simple approach.Herein,we develop Cu and Ce co-doping strategy that can not only greatly reduce lattice thermal conductivity but also improve the electrical transport properties.In this strategy,the incorporated Cu and Ce atoms could induce high-density SnSe_(2) nanoprecipitation arrays on the surface of SnSe microplate,and produce dopant atom point defects and dislocations in its interior,which form multi-scale phonon scattering synergy,thereby presenting an ultralow thermal conductivity of 0.275 W·m^(−1)·K^(−1) at 786 K.Meanwhile,density functional theory(DFT)calculations,carrier concentration,and mobility testing reveal that more extra hole carriers and lower conducting carrier scattering generate after Cu and Ce co-doping,thereby improving the electrical conductivity.The co-doped Sn_(0.98)Cu_(0.01)Ce_(0.01)Se bulk exhibits an excellent ZT value up to~1.2 at 786 K and a high average ZT value of 0.67 from 300 to 786 K.This work provides a simple and convenient strategy of enhancing the TE performance of polycrystalline SnSe.
基金funded by the Fundamental Research Funds for the Central Universities (No.2232020A-02)National Natural Science Foundation of China (Nos.51774096,51871053,51902333)+3 种基金Shanghai Committee of Science and Technology (No.18JC1411200)Program for Innovative Research Team in University of Ministry of Education of China (No.IRT16R13)financial support sponsored by Shanghai Sailing Program (No. 19YF1454000)Key Research Program of Frontier Sciences,CAS (No.ZDBS-LY-JSC037)。
文摘In this study,large-scale Te-doped polycrystalline SnSe nanopowders were synthesized by a facile hydrothermal approach and the effect of Te doping on the thermoelectric properties of SnSe was fully investigated.It is found that the carrier concentration increases due to the reduction of band gap by alloying with Te,which contributes to significant enhancement of electrical conductivity especially at room temperature.Combined with the moderated Seebeck coefficient,a high power factor of 4.59μW cm 1 K 2 is obtained at 773 K.Furthermore,the lattice the rmal conductivity is greatly reduced upon Te substitution owing to the atomic point defect scattering.Benefiting from the synergistically optimized both electrical-and thermal-transport properties by Te-doping,thermoelectric performance of polycrystalline SnSe is enhanced in the whole temperature range with a maximum ZT of-0.79 at a relatively low temperature(773 K) for SnSe0.85Te0.15.This study provides a low-cost and simple lowtemperature method to mass production of SnSe with high thermoelectric performance for practical applications.