Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sint...Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.展开更多
In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond...In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.展开更多
The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by u...The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.展开更多
The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown ...The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.展开更多
Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungst...Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred.展开更多
This paper provides a mathematical model and numerical method for predicting the velocity and temperature fields in the mud flows at the surface of a PDC (Polycrystalline Diamond Compact) bit. A 81/2' ( 21 59cm...This paper provides a mathematical model and numerical method for predicting the velocity and temperature fields in the mud flows at the surface of a PDC (Polycrystalline Diamond Compact) bit. A 81/2' ( 21 59cm ) crown type PDC R bit is used as an example. The complex configuration of the PDC bit surface is resolved numerically using body fitting coordinates and the cutters are simplified as drag elements in the momentum equations and as heat source in the energy equation. The finite volume method is used to discretize the momentum and energy equations for the non Newtonian flow. The numerical results effectively predict the flow structure and temperature field which can be used to design and optimize the PDC bit.展开更多
Nowadays many of oil and gas wells are drilled extensively by Polycrystalline Diamond Compact(PDC)drill bits.Various companies are manufacturing PDC cutters according to their usage.All of these companies concentrate ...Nowadays many of oil and gas wells are drilled extensively by Polycrystalline Diamond Compact(PDC)drill bits.Various companies are manufacturing PDC cutters according to their usage.All of these companies concentrate their products of PDC cutters to be well resisting for abrasive wear.The wear of PDC inserts leads to money loss as well as delays the drilling procedures causing unexpected dilemmas.Therefore,it is crucially significant to evaluate the quality of the PDC cutters based on their resistance against abrasive wear.The present work concentrates on assessing the PDC cutters from various sources using two non-destructive analytical approaches:Raman-Shift and Fourier Transformation Infrared Ray(FT-IR)spectra.The analysis of the PDC samples with the analytical techniques were validated with the previous experimental results obtained from micro and nano-scratch tests achieved on the same specimens.The presented work could be performed on many PDC cutters from various manufacturers as the applied tests considered non-destructive compared to the traditional destructive techniques which leads the way for evaluating lots of PDC cutters without causing any damage.The analysis of the applied analytical approaches agreed with the results obtained from previous experimental scratch tests.展开更多
基金Project(20070533113)supported by the Doctoral Foundation of Ministry of Education of China
文摘Thermal residual stresses in polycrystalline diamond compact(PDC)cutter arising from the difference in thermal expansion between the polycrystalline diamond(PCD)and the supporting tungsten carbide substrate after sintering at high pressure and high temperature were investigated using finite element simulation,laboratory tests and theoretical analysis.The obtained results show that although compressive residual stresses exist both in the interface of PCD table and in the most region of PCD table surface, the tensile residual stress,which is a fatal shortage to PDC,can also occur near the outer diameter area of PCD table,and the maximum value is 690 MPa.Distribution of tensile stress in the PCD table is given through experimental results,which is well consistent with the numerical results.This finding may be significant in designing new PDC cutters with lower residual stress and high cutting behavior.
文摘In this work, a kind of new vitrified bond based on Li2O-Al2O3-SiO2 glass ceramics was used to bond the diamond grains, which is made into grinding wheel and the cylindrical grinding process of polycrystalline diamond compacts (PDCs) by using the new vitrified bond diamond grinding wheel was discussed. Several factors which influence the properties of grinding wheel such as amount of vitrified bond and the kinds and amount of stuff in grinding wheel were also investigated. It was found that the new vitrified bond can firmly combine diamond grains, when there are only diamonds and vitrified bond in the structure of grinding wheel, the longevity of the grinding wheel is about 2.5-3 times as that of resin bond grinding wheel for processing PDCs. The grinding size precision of PDCs can be improved from 4-0.03 mm to 4-0.01 mm because of larger Young's modulus of vitrified bond than resin bond. The grinding time of a PDC product can be 1.75-2.0 min from 3.25-3.5 min, so this kind of grinding wheel can save much time for processing PDCs. Also, there is hardly noise when using this new vitrified bond diamond grinding wheel to process PDCs. The amount of vitrified bond in grinding wheel influences the longevity of grinding wheel. When the size of diamond grains is 90-107 μm, the optimal amount of vitrified bond in grinding wheel is 21% (wt pct). When the amount of vitrified bond exceeds 21%, there are many pores in grinding block, which will decrease the longevity of grinding wheel. The existence of addition stuff such as Al2O3 or SiC can reduce the longevity of grinding wheel.
基金Project(06JJ20094) supported by the Natural Science Foundation of Hunan Province, China
文摘The breakage mechanism of the polycrystalline diamond compact(PDC) cutters was analyzed by the energy theory of bending waves. The cutting tests of granite block were conducted on a multifunctional testing device by using the cutter at three kinds of negative fore angles of 30°, 45° and 60°. The results show that, when the edge of the PDC layer is broken, the layer of tungsten cobalt is broken a little under the angle of 30°, while the layer of tungsten cobalt is broken continuously under the angle of 60°, their maximum depths are about 2 and 7 mm respectively in the two cases. The eccentric distance mainly depends on the negative fore angle of the cutter. When the cutter thrusts into the rock under an attack angle of 60°, the energy of bending waves reaches the maximum since the eccentric distance is the maximum. So the damage of cutter is the most serious. This test result is consistent with the conclusion of theoretical analysis well. The eccentric distance from the axial line of cutter to the point of action between the rock and cutter has great effect on the breakage of the cutter. Thus during the process of cutting, the eccentric distance should be reduced to improve the service life of PDC cutters.
基金Research Program in the Ninth National Five-Year-Plan of Ministryof Land and Resources, China
文摘The distribution of thermal stresses in functionally graded polycrystalline diamond compact (PDC) and in single coating of PDC are analyzed respectively by thermo-mechanical finite element analysis (FEA). It is shown that they each have a remarkable stress concentration at the edge of the interfaces. The diamond coatings usually suffer premature failure because of spallation, distortion or defects such as cracks near the interface due to these excessive residual stresses. Results showed that the axial tensile stress in FGM coating is reduced from 840 MPa to 229 MPa compared with single coating, and that the shear stress is reduced from 671 MPa to 471 MPa. Therefore, the single coating is more prone to spallation and cracking than the FGM coating. The effects of the volume compositional distribution factor (n) and the number of the graded layers (L) on the thermal stresses in FGM coating are also discussed respectively. Modelling results showed that the optimum value of the compositional distribution factor is 1.2, and that the best number of the graded layers is 6.
基金supported by the National Natural Science Foundation of China(Grant No.52074365)grateful to the Sichuan Science and Technology Program,China(Grant No.2022YFG0289)+2 种基金sponsored by the Funding Project of Key Laboratory of Sichuan Province for comprehensive Utilization of Vanadium and Titanium Resources,China(Grant No.2018FTSZ26)the Project Supported by the Opening Project of Material Corrosion and Protection Key Laboratory of Sichuan province,China(Grant Nos.2021CL26,GK202104,and GK202106)supported by the Ph.D.Programs Foundation of Sichuan University of Science and Engineering,China(Grant No.2021RC18).
文摘Copper alloy composite bit matrix was prepared by pressureless vacuum infiltration,using at least one of the three kinds of tungsten carbide particles,for example,irregular cast tungsten carbide,monocrystalline tungsten carbide and sintered reduced tungsten carbide particles.The effects of powder particle morphology,particle size and mass fraction of tungsten carbide on the microstructure and mechanical properties of copper alloy composite were investigated by means of scanning electron microscopy,X-ray diffraction and abrasive wear test in detail.The results show that tungsten carbide morphology and particle size have obvious effects on the mechanical properties of copper alloy composites.Cast tungsten carbide partially dissolved in the copper alloy binding phase,and layers of Cu_(0.3)W_(0.5)Ni_(0.1)Mn_(0.1)C phase with a thickness of around 8–15μm were formed on the edge of the cast tungsten carbide.When 45%irregular crushed fine cast tungsten carbide and 15%monocrystalline cast tungsten carbide were used as the skeleton,satisfactory comprehensive performance of the reinforced copper alloy composite bit matrix was obtained,with the bending strength,impact toughness and hardness reaching 1048 MPa,4.95 J/cm^(2) and 43.6 HRC,respectively.The main wear mechanism was that the tungsten carbide particles firstly protruded from the friction surface after the copper alloy matrix was worn,and then peeled off from the matrix when further wear occurred.
文摘This paper provides a mathematical model and numerical method for predicting the velocity and temperature fields in the mud flows at the surface of a PDC (Polycrystalline Diamond Compact) bit. A 81/2' ( 21 59cm ) crown type PDC R bit is used as an example. The complex configuration of the PDC bit surface is resolved numerically using body fitting coordinates and the cutters are simplified as drag elements in the momentum equations and as heat source in the energy equation. The finite volume method is used to discretize the momentum and energy equations for the non Newtonian flow. The numerical results effectively predict the flow structure and temperature field which can be used to design and optimize the PDC bit.
文摘Nowadays many of oil and gas wells are drilled extensively by Polycrystalline Diamond Compact(PDC)drill bits.Various companies are manufacturing PDC cutters according to their usage.All of these companies concentrate their products of PDC cutters to be well resisting for abrasive wear.The wear of PDC inserts leads to money loss as well as delays the drilling procedures causing unexpected dilemmas.Therefore,it is crucially significant to evaluate the quality of the PDC cutters based on their resistance against abrasive wear.The present work concentrates on assessing the PDC cutters from various sources using two non-destructive analytical approaches:Raman-Shift and Fourier Transformation Infrared Ray(FT-IR)spectra.The analysis of the PDC samples with the analytical techniques were validated with the previous experimental results obtained from micro and nano-scratch tests achieved on the same specimens.The presented work could be performed on many PDC cutters from various manufacturers as the applied tests considered non-destructive compared to the traditional destructive techniques which leads the way for evaluating lots of PDC cutters without causing any damage.The analysis of the applied analytical approaches agreed with the results obtained from previous experimental scratch tests.