期刊文献+
共找到140篇文章
< 1 2 7 >
每页显示 20 50 100
Numerical Study and Optimization of CZTS-Based Thin-Film Solar Cell Structure with Different Novel Buffer-Layer Materials Using SCAPS-1D Software
1
作者 Md. Zamil Sultan Arman Shahriar +4 位作者 Rony Tota Md. Nuralam Howlader Hasibul Haque Rodro Mahfuja Jannat Akhy Md. Abir Al Rashik 《Energy and Power Engineering》 2024年第4期179-195,共17页
This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentr... This study explored the performances of CZTS-based thin-film solar cell with three novel buffer layer materials ZnS, CdS, and CdZnS, as well as with variation in thickness of buffer and absorber-layer, doping concentrations of absorber-layer material and operating temperature. Our aims focused to identify the most optimal thin-film solar cell structure that offers high efficiency and lower toxicity which are desirable for sustainable and eco-friendly energy sources globally. SCAPS-1D, widely used software for modeling and simulating solar cells, has been used and solar cell fundamental performance parameters such as open-circuited voltage (), short-circuited current density (), fill-factor() and efficiency() have been optimized in this study. Based on our simulation results, it was found that CZTS solar cell with Cd<sub>0.4</sub>Zn<sub>0.6</sub>S as buffer-layer offers the most optimal combination of high efficiency and lower toxicity in comparison to other structure investigated in our study. Although the efficiency of Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS are comparable, Cd<sub>0.4</sub>Zn<sub>0.6</sub>S is preferable to use as buffer-layer for its non-toxic property. In addition, evaluation of performance as a function of buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S, ZnS and CdS showed that optimum buffer-layer thickness for Cd<sub>0.4</sub>Zn<sub>0.6</sub>S was in the range from 50 to 150nm while ZnS offered only 50 – 75 nm. Furthermore, the temperature dependence performance parameters evaluation revealed that it is better to operate solar cell at temperature 290K for stable operation with optimum performances. This study would provide valuable insights into design and optimization of nanotechnology-based solar energy technology for minimizing global energy crisis and developing eco-friendly energy sources sustainable and simultaneously. 展开更多
关键词 thin-film solar cell CZTS Buffer-Layer Renewable Energy Green-House Gases Efficiency
下载PDF
Studies on the polycrystalline silicon/SiO2 stack as front surface field for IBC solar cells by two-dimensional simulations 被引量:1
2
作者 姜帅 贾锐 +4 位作者 陶科 侯彩霞 孙恒超 于志泳 李勇滔 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期481-490,共10页
Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrys... Interdigitated back contact(IBC) solar cells can achieve a very high efficiency due to its less optical losses. But IBC solar cells demand for high quality passivation of the front surface. In this paper, a polycrystalline silicon/SiO_2 stack structure as front surface field to passivate the front surface of IBC solar cells is proposed. The passivation quality of this structure is investigated by two dimensional simulations. Polycrystalline silicon layer and SiO_2 layer are optimized to get the best passivation quality of the IBC solar cell. Simulation results indicate that the doping level of polycrystalline silicon should be high enough to allow a very thin polycrystalline silicon layer to ensure an effective passivation and small optical losses at the same time. The thickness of SiO_2 should be neither too thin nor too thick, and the optimal thickness is 1.2 nm.Furthermore, the lateral transport properties of electrons are investigated, and the simulation results indicate that a high doping level and conductivity of polycrystalline silicon can improve the lateral transportation of electrons and then the cell performance. 展开更多
关键词 polycrystalline silicon SIO2 solar cell PASSIVATION simulation IBC
下载PDF
Effect of Incidence Angle of Magnetic Field on the Performance of a Polycrystalline Silicon Solar Cell under Multispectral Illumination 被引量:1
3
作者 Idrissa Sourabié Issa Zerbo +2 位作者 Martial Zoungrana Dioari Ulrich Combari Dieudonné Joseph Bathiebo 《Smart Grid and Renewable Energy》 2017年第10期325-335,共11页
The aim of this work is to investigate, with a three-dimensional steady-state approach, the effect of the incidence angle of a magnetic field on the performance of a polycrystalline silicon solar cell under multispect... The aim of this work is to investigate, with a three-dimensional steady-state approach, the effect of the incidence angle of a magnetic field on the performance of a polycrystalline silicon solar cell under multispectral illumination. The magneto-transport and continuity equations of excess minority carriers are solved to find the expression of the density of excess minority carriers and the related electrical parameters, such as the photocurrent density, the photovoltage and the electric power, of a grain of the polycrystalline silicon solar cell. The influence of the incidence angle of the magnetic field on the diffusion coefficient, the short-circuit photocurrent density, the open-circuit photovoltage and the electric power-photovoltage is studied. Then, the curves of the electric power-photovoltage is used to find the maximum electric power allowing to calculate, according to the incidence angle of the magnetic field, the fill factor and the conversion efficiency. The study has shown that the increase of the incidence angle of the magnetic field from 0 rad to π/2 rad, can reduce the degradation of the performance of solar cells. 展开更多
关键词 Bifacial CONVERSION Efficiency INCIDENCE Angle Magnetic Field polycrystalline Silicon solar cell
下载PDF
Low Energy H^+ Effects on the Photovoltaic and Optical Properties of Polycrystalline Silicon Solar Cells
4
作者 Li, Jinchai Wu, Xiangao +2 位作者 Ye, Mingsheng Fu, Qiang Fan, Xiangjun 《Wuhan University Journal of Natural Sciences》 EI CAS 1999年第1期43-46,共4页
Low energy hydrogen ion was used to passivate the electrically active defects existing in grains and grain boundaries of polycrystalline silicon solar cells.Short circuit current of H + implanted cells remarkably... Low energy hydrogen ion was used to passivate the electrically active defects existing in grains and grain boundaries of polycrystalline silicon solar cells.Short circuit current of H + implanted cells remarkably increased before and after preparing TiO 2AR(antireflective)coating.The measurements(at λ=6328) of the optical properties of H + implanted silicon samples show that:the value of absorption coefficient reached the level of a Si;refractive index n and reflectivity R significantly decreased;the optical band gap increased from 1.1 eV to 1.3 eV.The results indicate that Si H bonds have been formed after H + implantation.The calculation shows that the optical thickness cycle of TiO 2 AR coating will reduce correspondingly in order to obtain the optimum optical match between AR coating and implanted silicon since refractive index decreases after H + implantation. 展开更多
关键词 polycrystalline silicon solar cells hydrogen ion implantation optical properties
下载PDF
Polycrystalline Silicon Solar Cell p-n Junction Capacitance Behavior Modelling under an Integrated External Electrical Field Source in Solar Cell System
5
作者 Adama Ouedraogo Boukaré Ouedraogo +1 位作者 Boureima Kaboré Dieudonné Joseph Bathiebo 《Energy and Power Engineering》 2020年第5期143-153,共11页
The state of the p-n junction is very important to explain the performances of a solar cell. Some works give the influence of the electric field on the junction capacitance. However, these works do not relate the qual... The state of the p-n junction is very important to explain the performances of a solar cell. Some works give the influence of the electric field on the junction capacitance. However, these works do not relate the quality of the p-n junction under the electic field. The present manuscript is about a theoretical modelling of the p-n junction capacitance behavior of the polycrystalline silicon solar cell under an integration of the external electrical field source. An external electrical source is integrated in a solar cell system. The electronic carriers charge generated in the solar cell crossed mainly the junction with the great strength external electrical field. In open circuit, this crossing of the electronic charge carriers causes the thermal heating of the p-n junction by Joule effect. The p-n junction capacitance plotted versus the junction dynamic velocity and the photo-voltage for different external electrical fields. The electric field causes the decrease of the photo-voltage mainly the open-circuit photo-voltage. The decrease of the photo-voltage translates the narrowing of the Space Charge Region (SCR). The average value of the external electric field used in this study is not sufficient to cause the breakdown of the p-n junction of the solar cell system under integration of the external electrical field production source. The increase of the electrical field causes rather the narrowing of the SCR. That can provide an improvement of the solar cell’s electrical outputs. 展开更多
关键词 polycrystalline Silicon solar cell Space Charge Region Photo-Current Photo-Voltage Conversion Efficiency pn-Junction CAPACITANCE EXTERNAL ELECTRICAL Field
下载PDF
Three Dimensional Study of Spectral Response of Polycrystalline Silicon Solar Cells: Vertical Junction Frequency Modulation Scheme
6
作者 Nouhou Bako Zeinabou Hawa Ly Diallo +4 位作者 Aminata Gueye Camarat Moustapha Thiam Dan Maza Abouzeidi Madougou Saidou Gregoire Sissoko 《Journal of Energy and Power Engineering》 2013年第5期903-906,共4页
In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cel... In this paper, the modeling ofa bifacial polycrystalline silicon solar cells vertical junction is presented. The study in dynamic frequency is limited to wavelengths from 400 nm to 1100 nm. The dependence of solar cell spectral response on wavelengths for several modulation frequencies was evaluated by using solar cell internal quantum efficiency.The objective is to characterize the polycrystalline silicon in 3D. The effect of frequency modulation pulsation on the phase of internal quantum efficiency was presented as well as values of shunt and series resistance for various grains size values. The results show that the value of maximum internal quantum efficiency is about 50% with a wavelength of 0,82 nm and a frequency of 103 rad/s under monochromatic illumination. 展开更多
关键词 solar cell vertical junction polycrystalline silicon frequency modulation internal quantum efficiency wavelength.
下载PDF
Corrective Effect of the Angle of Incidence of the Magnetic Field Intensity on the Performance (Series and Shunt Resistances) of a Bifacial Silicon Solar Cell
7
作者 Idrissa Sourabié Mahamadi Savadogo +4 位作者 Boubacar Soro Ramatou Saré Christian Zoundi Martial Zoungrana Issa Zerbo 《Energy and Power Engineering》 2024年第9期313-323,共11页
This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystall... This article presents a three-dimensional analysis of the impact of the angle of incidence of the magnetic field intensity on the electrical performance (series resistance, shunt resistance) of a bifacial polycrystalline silicon solar cell. The cell is illuminated simultaneously from both sides. The continuity equation for the excess minority carriers is solved at the emitter and at the depth of the base respectively. The analytical expressions for photocurrent density, photovoltage, series resistance and shunt resistance were deduced. Using these expressions, the values of the series and shunt resistances were extracted for different values of the angle of incidence of the magnetic field intensity. The study shows that as the angle of incidence increases, the slopes of the minority carrier density for the two modes of operation of the solar cell decrease. This is explained by a drop in the accumulation of carriers in the area close to the junction due to the fact that the Lorentz force is unable to drive the carriers towards the lateral surfaces due to the weak action of the magnetic field, which tends to cancel out as the incidence angle increases, and consequently a drop in the open circuit photovoltage. This, in turn, reduces the Lorentz force. These results predict that the p-n junction of the solar cell will not heat up. The study also showed a decrease in series resistance as the incidence angle of the magnetic field intensity increased from 0 rad to π/2 rad and an increase in shunt resistance as the incidence angle increased. His behaviour of the electrical parameters when the angle of incidence of the field from 0 rad to π/2 rad shows that the decreasing magnetic field vector tends to be collinear with the electron trajectory. This allows them to cross the junction and participate in the external current. The best orientation for the Lorentz force is zero, in which case the carriers can move easily towards the junction. 展开更多
关键词 Angle of Incidence Magnetic Field Intensity Bifacial polycrystalline Silicon solar cell Series Resistance Shunt Resistance
下载PDF
Design of periodic metal-insulator-metal waveguide back structures for the enhancement of light absorption in thin-film solar cells 被引量:1
8
作者 郑改革 蒋剑莉 +3 位作者 咸冯林 强海霞 武虹 李相银 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期192-197,共6页
To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enha... To increase the absorption in a thin layer of absorbing material (amorphous silicon, a-Si), a light trapping design is presented. The designed structure incorporates periodic metal-insulator-metal waveguides to enhance the optical path length of light within the solar cells. The new design can result in broadband optical absorption enhancement not only for transverse magnetic (TM)-polarized light, but also for transverse electric (TE)-polarized light. No plasmonic modes can be excited in TE-polarization, but because of the coupling into the a-Si planar waveguide guiding modes and the diffraction of light by the bottom periodic structures into higher diffraction orders, the total absorption in the active region is also increased. The results from rigorous coupled wave analysis show that the overall optical absorption in the active layer can be greatly enhanced by up to 40%. The designed structures presented in this paper can be integrated with back contact technology to potentially produce high-efficiency thin-film solar cell devices. 展开更多
关键词 thin-film solar cells metal-insulator-metal waveguide enhanced optical absorption rig-orous coupled wave analysis
下载PDF
Improvement of the Open Circuit Voltage of CZTSe Thin-Film Solar Cells by Surface Sulfurization Using SnS 被引量:2
9
作者 孙顶 葛阳 +6 位作者 许盛之 张力 李宝璋 王广才 魏长春 赵颖 张晓丹 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第12期160-162,共3页
The objective of this study is to find an effective method to improve Voc without Jsc loss for Cu2ZnSnSe4 (CZTSe) thin film solar cells, which have been fabricated by the one step co-evaporation technique. Surface s... The objective of this study is to find an effective method to improve Voc without Jsc loss for Cu2ZnSnSe4 (CZTSe) thin film solar cells, which have been fabricated by the one step co-evaporation technique. Surface sulfurization of CZTSe thin films is carried out by using one technique that does not utilize toxic H2S gas; a sequential evaporation of SnS after CZTSe deposition and the annealing of CZTSe thin films in selenium vapor. A Cu2ZnSn(S, Se)4 (CZTSSe) thin layer is grown on the surface of the CZTSe thin film after the annealing. The conversion efficiency of the completed device is improved due to the enhancement of Voc, which could be attributed to the formation of a hole-recombination barrier at the surface or the passivation of the surface and grain boundary by S incorporation. 展开更多
关键词 Improvement of the Open Circuit Voltage of CZTSe thin-film solar cells by Surface Sulfurization Using SnS
下载PDF
A Novel Thin-Film, Single-Junction Solar Cell Design1 to Achieve Power Conversion Efficiency above 30 Percent 被引量:1
10
作者 Joseph Edward O’Connor Sherif Michael 《Materials Sciences and Applications》 2016年第12期823-835,共13页
The record efficiency for a thin-film, single-junction solar cell has remained static at 28.8% since 2012. This research presents a unique design that demonstrates potential to exceed record efficiency and approach th... The record efficiency for a thin-film, single-junction solar cell has remained static at 28.8% since 2012. This research presents a unique design that demonstrates potential to exceed record efficiency and approach the theoretical efficiency limit of ~33.5%. The findings of this study are significant, from an efficiency standpoint, and also because the cell design can be realized using existing fabrication methods that do not require complex, post-processing steps. In this study, a benchmark simulation is developed that closely resembles a high-efficiency, front-and-back contact cell. Intrinsic performance limiters are overcome by moving the emitter and front-contact to the back of the cell to eliminate electrical grid shading and improve optical performance. To further improve performance, the P-N junction formed by the emitter layer is removed from the model to allow selective Ohmic contacts to accept (reject) minority (majority) carriers as required. The design modifications improve open-circuit voltage, short-circuit current, and fill-factor which collectively boost efficiency above 30%-primarily due to a 2% gain of incident irradiance and improved optical performance. 展开更多
关键词 solar cell Back-Contacts GALLIUM-ARSENIDE thin-film
下载PDF
Enhanced efficiency of the Sb_(2)Se_(3)thin-film solar cell by the anode passivation using an organic small molecular of TCTA
11
作者 Yujie Hu Zhixiang Chen +3 位作者 Yi Xiang Chuanhui Cheng Weifeng Liu Weishen Zhan 《Journal of Semiconductors》 EI CAS CSCD 2023年第8期62-67,共6页
Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode ... Antimony selenide(Sb_(2)Se_(3))is an emerging solar cell material.Here,we demonstrate that an organic small molecule of 4,4',4''-tris(carbazol-9-yl)-triphenylamine(TCTA)can efficiently passivate the anode interface of the Sb_(2)Se_(3)solar cell.We fabricated the device by the vacuum thermal evaporation,and took ITO/TCTA(3.0 nm)/Sb_(2)Se_(3)(50 nm)/C60(5.0 nm)/Alq3(3.0 nm)/Al as the device architecture,where Alq3 is the tris(8-hydroxyquinolinato)aluminum.By introducing a TCTA layer,the open-circuit voltage is raised from 0.36 to 0.42 V,and the power conversion efficiency is significantly improved from 3.2%to 4.3%.The TCTA layer not only inhibits the chemical reaction between the ITO and Sb_(2)Se_(3)during the annealing process but it also blocks the electron diffusion from Sb_(2)Se_(3)to ITO anode.The enhanced performance is mainly attributed to the suppression of the charge recombination at the anode interface. 展开更多
关键词 Sb_(2)Se_(3) thin-film solar cell PASSIVATION
下载PDF
Optimizing a Single-Absorption-Layer Thin-Film Solar Cell1 Model to Achieve 31% Efficiency
12
作者 Joseph E. O’Connor Sherif Michael 《Journal of Materials Science and Chemical Engineering》 2017年第1期54-60,共7页
This research builds upon the authors’ previous work that introduced and modeled a novel Gallium-Arsenide, Emitterless, Back-surface Alternating Contact (GaAs-EBAC) thin-film solar cell to achieve >30% power conve... This research builds upon the authors’ previous work that introduced and modeled a novel Gallium-Arsenide, Emitterless, Back-surface Alternating Contact (GaAs-EBAC) thin-film solar cell to achieve >30% power conversion efficiency. Key design parameters are optimized under an Air-Mass (AM) 1.5 spectrum to improve performance and approach the 33.5% theoretical efficiency limit. A second optimization is performed under an AM0 spectrum to examine the cell’s potential for space applications. This research demonstrates the feasibility and potential of a new thin-film solar cell design for terrestrial and space applications. Results suggest that the straight-forward design may be an inexpensive alternative to multi-junction solar cells. 展开更多
关键词 thin-film solar cell Back-Contacts GALLIUM-ARSENIDE Modeling
下载PDF
Texture ZnO Thin-Films and their Application as Front Electrode in Solar Cells
13
作者 Yue-Hui Hu Yi-Chuan Chen +4 位作者 Hai-Jun Xu Hao Gao Wei-Hui Jiang Fei Hu Yan-Xiang Wang 《Engineering(科研)》 2010年第12期973-978,共6页
In this paper, three kinds of textured ZnO thin-films (the first kind has the textured structure with both columnar and polygon, the second posses pyramid-like textured structure only, and the third has the textured s... In this paper, three kinds of textured ZnO thin-films (the first kind has the textured structure with both columnar and polygon, the second posses pyramid-like textured structure only, and the third has the textured structure with both crater-like and pyramid-like), were prepared by three kinds of methods, and the application of these ZnO thin-films as a front electrode in solar cell was studied, respectively. In the first method with negative bias voltage and appropriate sputtering parameters, the textured structure with columnar and polygon on the surface of ZnO thin-film are both existence for the sample prepared by direct magnetron sputtering. Using as a front electrode in solar cell, the photoelectric conversion efficiency Eff of 7.00% was obtained. The second method is that by sputtering on the ZnO:Al self-supporting substrate, and the distribution of pyramid-like was gained. Moreover, the higher (8.25%) photoelectric conversion efficiency of solar cell was got. The last method is that by acid-etching the as-deposited ZnO thin-film which possesses mainly both columnar and polygon structure, and the textured ZnO thin-film with both crater-like and pyramid-like structure was obtained, and the photoelectric conversion efficiency of solar cell is 7.10% when using it as front electrode. These results show that the textured ZnO thin-film prepared on self-supporting substrate is more suitable for using as a front electrode in amorphous silicon cells. 展开更多
关键词 TEXTURED ZnO thin-film solar cells FRONT ELECTRODE MAGNETRON SPUTTERING Transparent CONDUCTING Oxide Surface Of Micrograph SnO2:F
下载PDF
Review on Alkali Element Doping in Cu(In,Ga)Se2 Thin Films and Solar Cells 被引量:2
14
作者 Yun Sun Shuping Lin +4 位作者 Wei Li Shiqing Cheng Yunxiang Zhang Yiming Liu Wei Liu 《Engineering》 SCIE EI 2017年第4期452-459,共8页
This paper reviews the development history of alkali element doping on Cu(In,Ga)Se2 (CIGS) solar cells and summarizes important achievements that have been made in this field. The influences of incorporation strat... This paper reviews the development history of alkali element doping on Cu(In,Ga)Se2 (CIGS) solar cells and summarizes important achievements that have been made in this field. The influences of incorporation strategies on CIG5 absorbers and device performances are also reviewed. By analyzing CIGS surface structure and electronic property variation induced by alkali fluoride (NaF and KF) post-deposition treatment (PDT), we discuss and interpret the following issues: ① The delamination of CIGS thin films induced by Na incorporation facilitates CulnSe2 formation and inhibits Ga during low-temperature co-evaporation process- es. ② The mechanisms of carrier density increase due to defect passivation by Na at grain boundaries and the surface. ③ A thinner buffer layer improves the short-circuit current without open-circuit voltage loss, This is attributed not only to better buffer layer coverage in the early stage of the chemical bath deposition process, but also to higher donor defect (Cd^+Cu) density, which is transferred from the acceptor defect (C^-cu) and strengthens the buried homojunction. ④ The KF-PDT-induced lower valence band maximum at the absorber surface reduces the recombination at the absorber/buffer interface, which improves the open-circuit voltage and the fill factor of solar cells. 展开更多
关键词 Alkali elements Cu(In Ga)Se2 thin-film solar cells Post-deposition treatment
下载PDF
Results in Sizing and Simulation of PV Applications Based on Different Solar Cell Technologies 被引量:1
15
作者 Alexandru Diaconu Laurentiu Fara +2 位作者 Paul Sterian Dan Craciunescu Silvian Fara 《Journal of Power and Energy Engineering》 2017年第1期63-74,共12页
Modeling and simulation of photovoltaic (PV) systems represents an essential task for the integration of PV panels in current power applications. At the present time, there are sizing tools of photovoltaic systems ava... Modeling and simulation of photovoltaic (PV) systems represents an essential task for the integration of PV panels in current power applications. At the present time, there are sizing tools of photovoltaic systems available on the market, taking into account the proposed energy consumption, site localization and system cost. An advanced specialized program (PVSyst) was considered. The sizing and simulations of two PV important applications were developed using PV modules based on three different technologies: monocrystalline and polycrystalline silicon, as well as CIS. Our results showed how different types of solar cell technologies influenced the final power output and performances for a PV LED lighting, as well as for a PV water pumping system, in terms of overall yield, efficiency and system availability. 展开更多
关键词 PHOTOVOLTAIC Simulations Monocrystalline polycrystalline Copper INDIUM SELENIDE solar cells PHOTOVOLTAIC Lighting PHOTOVOLTAIC Water PUMPING System
下载PDF
Effects of Layer Thickness on the Residual Stresses of CIGS Solar Cells with Polyimide Substrate 被引量:1
16
作者 Hansung Kim Da Xu 《Advances in Materials Physics and Chemistry》 CAS 2022年第9期195-206,共12页
In this paper, we investigate the effect of layer thickness on the residual stresses of copper indium gallium diselenide (CIGS) solar cells with polyimide substrate caused by CIGS layer deposition at 400?C and then co... In this paper, we investigate the effect of layer thickness on the residual stresses of copper indium gallium diselenide (CIGS) solar cells with polyimide substrate caused by CIGS layer deposition at 400?C and then cooling down to room temperature using the Finite Element Method (FEM). Moreover, we also examined the effect of layer thickness on residual stress of CIGS solar cells after cooling down to room temperature from the hotspot temperatures of 200?C, 300?C, and 400?C. Our simulated CIGS is composed of five layers: ZnO, CdS, CIGS, Mo, and PI substrate. We were able to quantify the effect of each layer’s thickness and hotspot temperature on the average stresses of each layer for the CIGS solar cells. We found that the PI substrate layer has the most significant effect on the residual stress of CIGS solar cells. Our simulation results reveal that the stress type (tensile vs. compressive) and the magnitude of stress of the CIGS layer (main absorber layer) can be controlled by changing the thickness of the PI substrate while applying a heat to CIGS solar cells. Quantitative analysis of relationship between layer thickness and thermo-mechanical stress of thin film solar cells can help solar cell manufacturers design more robust and reliable solar cells. For example, fabricating PI layer thickness less than 17 μm can improve the performance of CIGS solar cells by nullifying the compressive residual stress in the CIGS absorber layer. 展开更多
关键词 thin-film solar cells Residual Stress Temperature CIGS HOTSPOT
下载PDF
Numerical Modeling and Simulation of CIGS-Based Solar Cells with ZnS Buffer Layer 被引量:1
17
作者 Adama Sylla Siaka Touré Jean-Pierre Vilcot 《Open Journal of Modelling and Simulation》 2017年第4期218-231,共14页
Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our wo... Usually a buffer layer of cadmium sulphide is used in high efficiency solar cells based on Cu(In,Ga)Se2(CIGS). Because of cadmium toxicity, many in-vestigations have been conducted to use Cd-free buffer layers. Our work focuses on this type of CIGS-based solar cells where CdS is replaced by a ZnS buffer layer. In this contribution, AFORS-HET software is used to simulate n-ZnO: Al/i-ZnO/n-ZnS/p-CIGS/Mo polycrystalline thin-film solar cell where the key parts are p-CIGS absorber layer and n-ZnS buffer layer. The characteristics of these key parts: thickness and Ga-content of the absorber layer, thickness of the buffer layer and doping concentrations of absorber and buffer layers have been investigated to optimize the conversion efficiency. We find a maximum conversion efficiency of 26% with a short-circuit current of 36.9 mA/cm2, an open circuit voltage of 824 mV, and a fill factor of 85.5%. 展开更多
关键词 Cu(In1-xGax)Se2 thin-film solar cell NUMERICAL Modeling AFORS-HET Simulation Optimization
下载PDF
Surface morphology and impurity distribution of electron beam recrystallized silicon films on low cost substrates for solar cell absorber
18
作者 GROMBALL F MüLLER J 《Rare Metals》 SCIE EI CAS CSCD 2006年第z1期195-200,共6页
A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface ... A line shaped electron beam recrystallised polycrystalline silicon film on the low cost substrate was investigated for the use of the solar cell absorber. The applied EB energy density strongly influences the surface morphology of the film system. Lower EB energy density results in droplet morphology and the rougher SiO2 capping layer due to the low fluidity. With the energy increasing, the capping layer becomes smooth and continuous and less and small pinholes form in the silicon film. Tungstendisilicide (WSi2) is formed at the interface tungsten/silicon but also at the grain boundaries of the silicon. Because of the fast melting and cooling of the silicon film, the eutectic of silicon and tungstendisilicide mainly forms at the grain boundary of the primary silicon dendrites. The SEM-EDX analysis shows that there are no chlorine and hydrogen in the area surrounding a pinhole after recrystallization because of outgassing during the solidification. 展开更多
关键词 polycrystalline silicon film solar cell recrystallization energy surface morphology OUTGASSING
下载PDF
Study on AlSb Polycrystalline Films Prepared by Magnetron Sputtering
19
作者 XU Fu WU Lili FENG Lianghuan ZHANG Jingquan LI Wei LI Bing LEI Zhi ZENG Guanggen 《Semiconductor Photonics and Technology》 CAS 2010年第1期53-56,61,共5页
AlSb polycrystalline thin films were prepared by magnetron sputtering with an improved geometric target, and their structural,electrical and optical properties were studied. The results of XRD measurements suggest tha... AlSb polycrystalline thin films were prepared by magnetron sputtering with an improved geometric target, and their structural,electrical and optical properties were studied. The results of XRD measurements suggest that the annealed AlSb thin films are Zinc-blende structure with the average size of about 23~31 nm, and the higher temperature promotes the crystallization of the films. The morphology obtained from the AFM measurements reveals that the surfaces of the films are smooth and the particles are uniform with the average size of about 50 nm. Hall Effect measurements show that AlSb films are p-type semiconductors and the test of temperature dependence of dark conductivity in vacuum indicates the conductivity activation energys are 0.05 eV at low temperature and 0.13 eV at a higher temperature. The optical bandgap for a typical AlSb film is 1.52eV, which is indicated from the optical absorption measurements. 展开更多
关键词 ALSB polycrystalline films magnetron sputtering solar cell
下载PDF
Optical simulation of external quantum efficiency spectra of CuIn_(1-x)Ga_xSe_2 solar cells from spectroscopic ellipsometry inputs
20
作者 Abdel-Rahman A.Ibdah Prakash Koirala +5 位作者 Puruswottam Aryal Puja Pradhan Michael J.Heben Nikolas J.Podraza Sylvain Marsillac Robert W.Collins 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第4期1151-1169,共19页
Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric functio... Applications of in-situ and ex-situ spectroscopic ellipsometry (SE) are presented for the development of parametric expressions that define the real and imaginary parts (ε1, ε2) of the complex dielectric function spectra of thin film solar cell components. These spectra can then be utilized to analyze the structure of complete thin film solar cells. Optical and structural/compositional models of complete solar cells developed through least squares regression analysis of the SE data acquired for the complete cells enable simulations of external quantum efficiency (EQE) without the need for variable parameters. Such simulations can be compared directly with EQE measurements. From these comparisons, it becomes possible to understand in detail the origins of optical and electronic gains and losses in thin film photovoltaics (PC) technologies and, as a result, the underlying performance limitations. In fact, optical losses that occur when above-bandgap photons are not absorbed in the active layers can be distinguished from electronic losses when electron-hole pairs generated in the active layers are not collected. This overall methodology has been applied to copper indium-gallium diselenide (Culn1-xGaxSe2; CIGS) solar cells, a key commercialized thin film PV technology. CIGS solar cells with both standard thickness (〉2 μm) and thin (〈1 μm) absorber layers are studied by applying SE to obtain inputs for EQE simulations and enabling comparisons of simulated and measured EQE spectra. SE data analysis is challenging for CIGS material components and solar cells because of the need to develop an appropriate (ε1, ε2) database for the CIGS alloys and to extract absorber layer Ga profiles for accurate structural/compositional models. For cells with standard thickness absorbers, excellent agreement is found between the simulated and measured EQE, the latter under the assumption of 100% collection from the active layers, which include the CIGS bulk and CIGS/CdS heterojunction interface layers. For cells with thin absorbers, however, an observed difference between the simulated and measured EQE can be attributed to losses via carrier recombination within a- 0.15 μm thickness of CIGS adjacent to the Mo back contact. By introducing a carrier collection probability profile into the simulation, much closer agreement is obtained between the simulated and measured EQE. In addition to the single spot capability demonstrated in this study, ex-situ SE can be applied as well to generate high resolution maps of thin film multilayer structure, component layer properties and their profiles, as well as short-circuit current density predictions. Such mapping is possible due to the high measurement speed of 〈1 s per ( , 4) spectra achievable by the multichannel ellipsometer. 展开更多
关键词 solar cells thin-film ELLIPSOMETRY SPECTROSCOPIC Culn1-xGaxSe2(CIGS) Optical properties Quantum efficiency External Simulation solar-cell
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部